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FOREWORD

Turbulent flow is the most common form of motion of fluids, gases and plasma. /3%
Nevertheless, the essence of this phenomenon became clear, if only in its most
general aspects, only after the classical investigations of O. Reynolds, and turbu-
lence was gradually perceived as a phenomenon inherent in nature and in various
engineering processes.

Turbulence theory still remains one of the most fundamental and least
developed problems of physical mechanics,

The ideas of L. Prandtl, K. Taylor and A. N. Kolmogorov regarding the
existence of certain internal scales of turbulence led to the development of semi-
empirical methods that are presently the only sound methods of extending the
empirical knowledge in this area beyond the immediate context of tha experimental
data, :

Most difficulty is encountered in the treatment of wall turbulence, i.e., the
turbulent flow around a rigid body.

Two circumstances are paramount here: first, the significant structural
inhomogeneity of the flow and its time-averaged parameter fields, and second, the
existence of a flow region in the immediate vicinity of a rigid surface in which
molecular friction is unconditionally dominant.

The turbulent boundary layer, just as any other stable statistical system, has
some quite conservative properties; the significance of these properties in the
development of a theory and practical computing methods have been accorded too
little attention until recently.

The laws of wall turbulence in the immediate vicinity of a rigid body, but /4
outside the viscous region, are the most stable.

A change in conditions at the rigid surface exerts a significant influence on the
viscous portion of the flow, and a change in conditions in the undisturbed flow reacts
on the flow in the outer region of the turbulent boundary layer.

The circumstance that the dimensions of the viscous region diminish with
decreasing viscosity more rapidly than does the size of the total turbulent boundary
layer is also of much importance. In this connection it is necessary to consider
some idealized turbulent flow with a degenerate viscous sublayer. It is noteworthy
that in this boundary layer the integral characteristics of the transfer of momen-
tum, heat and mass are determined by the properties of the conservative portion of
the turbulent core and their relative changes when acted upon by disturbing factors
(pressure gradient, compressibility, temperature non-uniformity, permeability of
the rigid surface, physico-chemical transformations, etc.) do not depend on the

*Numbers in the margin indicate pagination in the foreign text.
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empirical constants and are not linked to any special form of semi-empirical
theory.

This text treats the fundamental theory of the turbulent boundary layer with
vanishing viscosity and methods for its application in computing real flows. Also
considered are the limiting properties of the thermal boundary layer at an adiabatic
surface, the interaction of a submerged jet and a rigid body and certain other prob-
lems of thermal screens. Thus this monograph does not cover by any means all
questions of turbulent boundary layer theory, but primarily only the results obtained
in the main directions developed by the authors.

It is assumed that the reader is adequately equipped with the fundamentals of the
modern theory of the boundary layer and the theory of convective heat-mass transfer,

We are most indebted to our colleagues of the Institute of Thermophysics and to
the Air Transport Institute, Academy of Sciences, USSR, particularly to E. P.
Volchkov and B. P. Mironov, who took direct part in the development of these new
ideas and contributed directly to their development,

B. S. Petukhov and V. D. Vilenskiy are due thanks for their many valuable
comments and discussions.

The Authors
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PRINCIPAL NOTATION

x, y—coordinates directed downstream along the surface and along the surface
normal, respectively.

W wy—projections of average velocity on the x- and y-axes.

0—thickness of dynamic boundary layer.
GT—thickness of thermal boundary layer.
6D—thickness of diffusion boundary layer.
P—pressure.

p—density.

T—shearing stress in the xz-plane.

Ve Vy’ Vz-—components of the fluctuating component of the velocity.

¢~ fluctuating component of temperature.

Bx--magnetic field induction in the z-direction.

6*—displacement thickness.
6** —momentum loss thickness.

yy—thickness of viscous sublayer.

2
cy= V}’ —coefficient of friction.
PeTg

p—coefficient of dynamic viscosity.

v =u/p—coefficient of kinematic viscosity.

i.,=£’,—. —relative mass velocity through surface of body.

jy—stream in direction of y-axis.

vy = ‘/-:—V: —friction velocity.

w’ . - .
v=o —dimensionless velocity.

ix



a—velocity of sound.

£
n = ﬂv—‘i’- —dimensionless coordinate.

y v Yy . .
b= & = b= by = ~dimensionless distances from wall.
3 3, 3 0=,

2 2 <1
= h’:‘ T s b= P.l:Z. ?—permeablhty parameters.

» jw 1 Cp iw 1
r= Pels §to’ D™ pyty StD )

Ce —coefficient of friction on a plane impermeable plate in a non-isothermal flow
(standard conditions').

~ < . . . i s
= —dimensionless shearing stress under conditions considered.

‘;‘,=.—:;'- —dimensionless shearing stress under "standard conditions."
o]

Re** = P':‘.r Reynolds number formed in accordance with the momentum loss thickness.

3 dw, , 3**dw, 3* dw,

h=or 2 1= v I'= E’."d_{—Shape parameters.

g—energy flux due to molecular and turbulent heat transfer.

qv—volume density of all energy sources.

i—specific enthalpy.
T—temperature.
A —coefficient of heat conductivity.

Cp—specific heat at constant pressure.

i*—stagnati on enthalpy.

i;: —total enthalpy.

ci—concentration by weight of i-th component.

i(i)—heat production of i-th component.




Pr = P—% ~—Prandtl number.

Pr,=C, %——turbulent Prandtl number.

M= %’- —Mach number.

.= sf- —dimensionless velocity.
i;—ewilibﬁum enthalpy at wall,
T:V—equilibrium temperature at wall,
r—recovery coefficient.

Sca= % ~—Schmidt number.
Scey= D—‘:—turbulent Schmidt number.

S T
b= <—f‘:—)—enthalpy (temperature) factor.

{® TO
.= —‘—"L"-( ,‘?'. 2 ) —adiabatic kinetic enthalpy (temperature) factor.

8% = ¢ — $* —heat-transfer factor.

i* T
= ( -—%) —kinetic enthalpy (temperature) factor.

e

€—non-similarity factor of velocity and enthalpy profiles.

ok

Giz—energy—loss thickness.
sty .
Re**p = —(1— —Reynolds number formed from energy-loss thickness.
St; = — Jerr eneralized Stanton number
P Ry — 1) B .

Kok
6D —mass-loss thickness.



jom

Pee (Cw — Co) —Stanton diffusion number,

. i . -
s = j—‘—dlmenswnless energy and mass flows.
wl

g==

2
9w

8*, Ac* —heat- and diffusion-analogs of frictional velocity.

i

g —coefficient accounting for the effects of density fluctuations on Tpe

= < £ ) .p— (S_t) .w St_,, __relative laws of friction, heat-transfer and
Rese’ 7S T \Ste Jgessy " P \Stp, jRews,  mass-transfer.

Cte
ws, 9. Aco—dimensionless velocity, enthalpy and concentration in "standard" conditions.
¥,. P5,. ¥, —limiting relative laws of friction, heat- and mass-transfer.

a—degree of dissociation of gas.
ig—heat of dissociation.

b __. —critical injection parameter.
crit

U= wo/wqu—ratio of velocity at outer edge of boundary layer to maximum velocity
Tow =V 24
max

F—nozzle throat area.

F__. —area of critical nozzle section.
crit
Pe,’;,* = Re,’;,*Pr—Peclet number according to energy-loss thickness.

q(U)—flow-rate function.

ég—displacement thickness in Dorodnitsin variables.

\I/l—relative law of friction for laminar boundary layer,

G—gas flow rate.

a—non-uniformity factor of the velocity distribution over the tube cross section.
0—effectiveness of the gas screen.

A—roughness height.

c'—concentration of i-th component at a given point of the boundary layer at an
ideal wall,
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(c_ ). —concentration of CO, at wall,
co'w

Main Subscripts
w—parameters at wall.
0—parameters at outer edge of boundary layer or ''standard' conditions.
—parameters with Re — oo,
crit—critical parameters.

l—parameters of substance introduced into the boundary layer at intersection with
the wall surface.

00—parameters with adiabatic stagnation of gas,

xiii



PART I: BOUNDARY LAYER WITH VANISHING VISCOSITY

CHAPTER 1
THE DYNAMIC BOUNDARY LAYER

1.1. Equations of Motion of the Plane Boundary Layer /9

When a fluid flows around a rigid surface a dynamic boundary layer is formed,
i.e., a region in which the velocity of the fluid varies from the wall velocity to a
velocity quite close to that of the undisturbed flow. If the dimensions of this region
are significantly greater than the molecular free path, the relative velocity of the
medium at the surface of the rigid body is, practically, zero.

The usual flow region in which the gas may be considered to be a continuous

medium "attached' to the surface in the flow, is described by the condition
*

M< 00!} Re. (1-1-1)

When separating out the dynamic boundary layer for y=§, the exact boundary
conditions are replaced by approximate conditions. Then

y——»b, w,—>( 1—8) Qo,
y—0, w,—>0;

where £ is a small quantity.
We refer to a boundary layer of finite thickness in this sense (Fig. 1.1).
As first shown by Prandtl, the conditions

OP 6’(:', 63..,
dx > o S (1-1-2)

~
b—l
(=]

are satisfied in a plane boundary layer in the absence of significant transverse
forces (e.g. centrifugal forces).

|

In view of this the equation of motion is considerably simplified and takes the
form

w, ow, .
+ w\ o TP 5 0y ™ — jyB;. (1-1-3)

With j B, =0,

dp ow,
e + w5 (1-1-4)

y

s : :
Translator's Note: In Russian practice, the comme indicates a decimel point.



The equation of continuity retains its usual form, i.e., for a plane, steady flow

it is

d (pw,) + d(""u) =0
dy ~— 7

0x

FIG. 1.1. Diagram of boundary layer at the surface
of a body; a) plane boundary layer; b) axi-symmetric
boundary layer.

(1-1-5)

These and all subsequent
equations, unless specifically
stated, refer to steady, mean
motion, that is, all quantities
appearing are averaged over
a period of time considerably
longer than the period of the
turbulent fluctuations, where,
for a conducting liquid, the
fluctuations in the electric and
magnetic quantities are neg-

lected in a first approxima-
tion.

In the laminar boundary layer

s=nle, (1-1-6)
and in the turbulent boundary layer
a=p2e — o, (1D, (1-1-7)

where

s’= p w08 Lv,v,&
Ogty

is a coefficient accounting for density fluctuations ascribable to temperature fluctua- /11
tions and g is the temperature coefficient of volume expansion.

Outside the boundary layer (y>>8) the frictional forces are almost absent, and for
a steady flow with BZ =0

d d .
— = (1-1-8)

1.2. Integral Momentum Relations

Term-by-term integration of the equation of motion of the plane boundary layer
(1-1-3) from 0 to 0, taking into account the equation of continuity and (1-1-7), reduces
to the so-called integral momentum relations (the Karman equation). If we assume
ijz = const. over the boundary layer cross section for conducting fluids, then

d -2-
p.w.%=-—-£—+lv3z: (1-2-1)




da'-°+28” 4 3% dw, , 3%*dp, w '.‘w (1_2—2)

dx w, Tdx TV p, dx Pelle p.wg :
Here
2
=\ 1= .,
5( P.w.)dy (1-2-3)

is the displacement thickness;

is the momentum loss thickness.

In dimensionless form

T=2"3 and 3" =3""f3. (1-2-4)

Integral characteristics such as 6* and 6** have the remarkable property that an
increase in the upper limit of integration in the range y > 0 yields essentially no
change in their magnitudes. In experimental determinations with sufficiently accurate
measurements such "internal" linear characteristics of the boundary layer are prac-
tically insensitive to a further improvement in instrumental accuracy, while the
boundary layer thickness 6 is directly related to the choice of the quantity €.

Stated differently, we can write for the boundary layer

5(1_‘,_?':_)%1~f75 (1—5“7) dy. (1-2-5)

The quantity jV in (1-2-2) represents the mass velocity through the rigid surface

considered. If this surface is impermeable (not porous, or if no physico-chemical
transformations take place in it), jw = 0.

We introduce the following notation:

Cy= 2 (1_2_6)
Pelly
L
H=we (1-2-7)
_ 8 dw, . -2-
f=—r (1-2-8)

Regi — Pc“’:::‘ :

where * {s the characteristic viscosity, not dependent on x.

W



Then the integral momentum relation can be written as

R FRe, (I +H)[—F, Re, =Re, <L. (1-2-10)

Here X = x/L is the relative longitudinal distance (L = characteristic length of
body) jw = jw/ ( powo) is the relative mass velocity through the surface of the body;

ReL = powoL/p * is the Reynolds number set up for the characteristic length of the
body and the local flow velocity outside the boundary layer.

For a flow without pressure or magnetic field gradients (f = 0, since dP/dx = 0,
Bz = 0) we have

d Re**
aRe. —T = %, (1-2-11)

where

~
.—l
(V0]

Rex=wyx/vy, wy=const.

Thus the integral momentum relation interrelates the local coefficient of friction
Cp» the local value of Reynolds number in the form Re** and the external flow param-

eters (wall permeability, pressure distribution along the flow, magnetic field inten-
sity, current density).

The quantities H and f are related to body shape and are hence called shape
factors. For a plane boundary layer of conducting fluid at an insulating wall

jy¥const=j,(2), E,=const,

and hence, after the appropriate conversions, we have

ds** e 1 d=z, 1 dp,
==+ [; 7z (H+2)+P—.:£+

» (1-2-12)
B,
gl Jw €t
+?0¢'g HJ] Py 2
where
)
Hj=4;7%%, -\:=j‘i/l - %)dy.
0\ v
j; is the stream at the outer edge of the boundary layer.
Going over to the Reynolds number, we have
dRe** B,/
=5 +Re, (1 +H)f+Re"Tm§ H;— (1-2-13)
Q

- cy
- w ReL = ReL 2




For an axi-symmetric boundary layer, a diagram of which is shown in Fig. 1.1,
with 6 « Rx’ the integral momentum equation takes the form

34y 4 8**dR, -
e R i) I S S L R (1-2-14)
or
LR+ Re,Rf (1 4 H) — Re,Rifu =Re,Re <L (1-2-15)
We assume
1
6’=J(l —pw) (_1 * ki.cos@) oE; (1-2-16)
- ]
=0 (l—o1 + L cos3) e, (1-2-17)
Jrtmns i)

where § = p/p0 is the relative density of the medium at a given point; Rx is the radius

of curvature of the body in the diametral plane; g is an angle (see Fig. 1.1).
In what follows, all considerations will relate basically to nonconducting fluids.
1.3. Turbulent Friction Near the Wall

On substituting the shearing stress from (1-1-7) into (1-1-4) we can write the
equation of motion of a plane boundary layer as

Lt {IRer 2 (1= Ble (v ,,y)}

o, (1-3-1)
=, 2= o +pwy 3 "
Here
5o __ 4 Ow, . _a.
Re === %% (1-3-2)
is the local Reynolds number in the sense of L, G. Loitsyanskiy [581;
= O
X == T w, (1-3-3)
1 dy

is the characteristic of the intensity of the turbulent fluctuations in the sense of
L. Prandtl.



.
=
[3))

At a rigid impermeable wall vy = 0, and hence we have the conditions

I

PR P} Y .
) ‘-.O' U.ly _.O' T tw = (‘S’;‘)wv Re ~ %y" (1"3-4)

where gl is the shearing stress due to molecular viscosity.

This region is called the viscous sublayer of the turbulent boundary layer. We
denote its nominal thickness as y;, and the velocity at its edge as w;. With large
enough Reynolds numbers, y, « 6.

In the region y >y, the role of molecular friction reduces to the dissipation of the
flow of mechanical energy from large-scale turbulence fluctuations into small-scale
fluctuations, and turbulent friction is essentially independent of the molecular vis-
cosity of the medium. From this it follows that the quantity x in the outer periphery
of the viscous sublayer does not depend materially on Re or on the conditions at the
outer edge of the turbulent boundary layer:

Nn<y<kLo, y=x=const. (1-3-5)

Accordingly, the law of turbulent friction near a rigid wall, but outside the vis-
cous sublayer, is defined by the Prandtl formula*

w=p (x5 ) 1= (1-3-6)

As will be shown later, formula (1-3-6) is of fundamental importance in the theory
of the turbulent boundary layer with vanishing molecular viscosity.

In the immediate vicinity of the wall, i.e., within the viscous sublayer, the tur-
bulent fluctuations are strongly damped by molecular friction and their magnitude is
directly related to Re.

1.4. Logarithmic Velocity Profile /16

Consider a plane, turbulent boundary layer of an incompressible fluid with f = 0.
Then, in the region y; <y « 6, with good accuracy

du, \?
g=t,=fw=p(,.y = ) (1-4-1)
and accordingly
w4+ T L, (1-4-2)

*Strictly speaking this formula has the form

ow,

ow,
oy | oy

o =p (xy)"




This velocity distribution law was first defined by Prandtl and Nikuradze. Its
universal form is

1
’ac.-i-—;-ln ., (1-4-3)

where ,r=-;%" is the dimensionless velocity; ¢, = ¢, — —:—ln 7, is some constant;
n=o*,y/v is the dimensionless distance from the wall; ¢; and n; are the values of
these parameters at the boundary of the viscous sublayer.

The quantities ¢ and 7y correspond to the common intersection of the logarithmic
velocity profile in the turbulent core of the boundary layer and the linear velocity
distribution in the viscous sublayer

@=1. (1-4-4)

This arrangement of the turbulent boundary layer is called the ""double layer",
and it suffices for solution of the friction problem.

- . - Figure 1.2 shows experimental /17

? . S o data on the effect of external turbu-
© lence on the velocity profile in the
4 turbulent boundary layer, with f =0,

/ It can be seen clearly that the velocity

7 profile is significantly deformed in

/ the outer portion of the boundary
/ layer with high levels of turbulence in
the main flow (y > 6). But near the

wall the logarithmic velocity distri-
bution is maintained.

sl - ‘ The same picture is also observed

. . Ui in the flow of an incompressible fluid
O 2 ¢ 6602 2 4 680 2 4 64n* withf#0 (Fig. 1.3). However, in
this case T # T, hear the wall and the

FIG. 1.2. Influence of free stream turbulence

. s presence of the logarithmic section of
i):yt;};‘e velocity profile in the turbulentboundary the velocity profile requires special

Test data [258]: - ©'® @~ low turbulence treatment,
(up to 1%); ©@- ® O—high turbulence (up to 10%). According to the test data % = 0.4*
and (in the two-layer scheme) 7y = 11.6.
With these coefficients the Prandtl-Nikuradze formula takes the form

9=55+25In7. (1-4-5)

*The theoretical value of this quantity is 0. 395, as computed by M. A. Gol'shtik
and S. S. Kutateladge [22].
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FIG. 1.3. Effect of longitudinal pressure
gradient on the velocity profile in the
turbulent boundary layer. Experimental
points from data: o. e- Shubauer and
Klebanov [211]; C. @ - Fage [137]; & & -
Badley and Brebner [{108]; & @ —-A. L.
Leont'ev, P. N. Romanenko, A. N. Oblivin
[66]. Curve 1—¢ = 7; curve II—¢ =5.5
+2.51u 1.

1.5. Quadratic Law of Friction in the
Core of a Turbulent Boundary
Layer

Formulas (1-4-1) and (1-4-5) re-
flect the basic regularity of the devel-
oped turbulent flow—the quadratic law
of friction. In this case the magnitude
of the friction depends only on a single
physical property of the medium—the
density. The unique relationship be-
tween turbulent friction and the field
of average flow velocities is the next
fundamental factor. Here the mag-
nitude of Trp is definitively fixed by

the derivative 8wx/ By in the region of

significant velocity changes.

This result is confirmed experi-
mentally by the fact of the existence
of a logarithmic section of the velocity
profile near a body in a flow of in-
compressible fluid.

But the inequality [dw./dx]|>> |0w.
/0y| may also exist in the outer portion

of the boundary layer, for f # 0, with y—8 dw./0y—s0, dw./dx—>dw,/dx. Therefore,
for a plane turbulent boundary layer of incompressible fluid, we must have in the

general case

0,0, =0

_— dw,  oOw, _e_
(W’ oy’ 'Y 8). (1-5-1)

Keeping in mind (1-4-1), we can write

o0y . (dw.ox . g\
Tfow N\t L \Gwjoy E)' (1-5-2)
(' 0v>
where §=y/§ so that y—r« as :—1.
If we introduce the parameter
__ | Voo,
I=|sa5l | (1-5-3)
then
w=r (1% )" (1-5-4)

/18



where

/0
t=u(%; 6. (1-5-5)

Expression (1-5-4) is known as the Prandtl-Taylor formula, and, as can be seen
from the above discussion, it is not related to any specific representation of the
mechanism of turbulent transfer. *

The quantity 1 can be considered to be some integral linear scale of turbulence
that retains the imprecise but traditional name of mixing path length.

In the vicinity of the viscous sublayer we have the law (1-3-6).
1. 6. Shearing Stress Profile Approximations

We know that the distribution of shearing stress over the boundary layer cross
section depends weakly on the fluid flow state. Thus, for example, with a steady,
stable flow of an incompressible fluid of constant properties in a duct of constant

cross section, the shearing stresses vary linearly over the duct width, independently
of the fluid flow state, i.e.

‘ : ]
where £ = y/h; h is the half-width, or radius, of the duct.

In the general case the distribution of shearing stresses over the cross section of
the boundary layer can be found from the equations of motion and continuity [18].

By integrating the equation of motion over the boundary layer section from 0 to Y,
we find

[
d
“—1w=zx—-§pw:dy_
0

14
d d
—Wa g Ipwx dy + oy o 0 — potw, 72
9

y. 11-4-9)

For standard conditions ( p= const, jw =0, dwo/dx = 0) we have from Eq. (1-6-2):

¥ ¥
d
A s \w’_dy—pwxﬁjw,dy. (1-6-3)
s

* Prandtl derived this formula from the somewhat inexact analogy between the
transfer of certain "turbulent blobs'' of fluid and the motion of gas molecules.
Taylor proceeded from the more tenable hypothesis of the transfer of vorticity.



~
[ 2]
(=]

Going over to dimensionless form, we have
~ .‘;. 9 4 t ‘ p £
==t e [ (o o) () a-6-4

0
where ¢ =y/0.

For a self-similar flow w = £(¢), and then, taking into account the fact that

€0 48

1
3 __.ElSm(l — o) d¥, we can write

;:l—%(«:fuwdE—Sm’c&). (1-6-5)
)

Accordingly, in the general case, we have from (1-6-2):

=2z, 462+~ -2 )Z (1-6-6)

where

or

'%:' =9 + bl?t + A?I' (1-6-7)

where

Thus, for the general case with self-similar flow, the functions ¢, ¢, and ¢ ZQ
depend on the coordinate £, and on the velocity and density distributions in the boundary

layer.

10




For more practical cases, a power-law approximation of the shearing stress
distribution over the boundary layer cross section yields satisfactory results.

From the definition of a dynamic boundary layer of finite thickness we have the
condition

t=0,7=1;t=1,7=0. (1-6-8)
Very close to the wall w.—0. and the equation of motion can be written as
dP ; & du, -6~

Integrating (1-6-9) with the condition pwy = jw’ we find

dp
~ty + 'y+/wwt (1-6-10)

With y—-8 wr—w,, dw,/dy—>0, and taking (1-1-4) into account, we can write
0t/0y—0. From this the set of conditions follow

t—0, T~ 14 At b,m; }

- (1-6-11)
t—1, T—0, 5 0.
Here
=3¢ ___ 4 -6-
A= e (1-6-12)
b= (1-6-13)
] T

The first of these represents a certain modification of the shape parameter (aero-
dynamic body curvature parameter).

The second quantity describes the effect of supply or loss of matter through the
surface of the body. We shall refer to this quantity as the wall permeability param-
eter.

In what follows we shall treat some additional modifications of the shape- and
permeability parameters.

Conditions (1-6-1) are satisfied by a cubic parabola

T=1—3 4 % 4 (A4 b,0) (1 — &) (1-6-14)

or
(1 +8doe ;E“’) (1-6~15)

11



where

:;:;l——3?—k2?.

(1-6-16)

The quantity Ty represents the distribution of shearing stress over the thickness

of the boundary layer at a smooth impermeable plate in the absence of a pressure

gradient.

The quantity w = wx/w0 represents the dimensionless longitudinal velocity com-

ponent.
Iz [
' 060 ol o
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2 >
H
SN N,
N
y

” | T adl5]
v @ a4 @& a8 10

FIG. 1.4. Comparison of formulas
(1-6-15) with test data.

Curves calculated from (1-6-15) (for A
=0): 1—F =1+38 +2¢% 2-F =7

(1 + by w). Points—tests by Mickley and
others [180] and the treatment of Leadon
[169]: o - Tw =0.003; b =1.3; ¥ = 0.455,

® -j =0; values of w are experimental
w

values.

It follows from (1-6-14) that the
maximum shearing stress is found at a
distance from the wall of

_ 2A43 IAF3\ 7 A
Y =332 “‘/(3A+2) TIAFe"
(1-6-17)

in the boundary layer at an impermeable
surface, with A>0.

As A—>, I,—»i/y, i.e. with dif-
fusor flow (dP/dx>0), the maximum
shearing stresses in the boundary layer
at an impermeable surface lie in the
range 0<z<Ys .

Figure 1-4 gives a comparison of
formula (1-6-15) with the test data. It
can be seen clearly that this approxima-
tion yields not only a qualitatively correct
representation of the function 7, but also
agrees with the quantitative results, par-
ticularly in the most effective wall region
of the boundary layer, where we can
take 1/(1+2)=1.

1.7. Separation and Displacement of the Boundary Layer

In a convergent flow (dP/dx <0) the stream is accelerated, the direction of motion of

the fluid coincides with the direction of action of the pressure forces and the boundary
layer at an impermeable surface is always stable in the sense that it does not separate

from the body.

In diverging flow (dP/dx>0) the stream is slowed down, the pressure increases and
its action is counter to the direction of motion of the fluid. Since the pressure gradient

remains the same over the entire cross section of the boundary layer, but the flow

12
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velocity is decreased toward the wall, the supply of kinetic energy of the flow inside the
boundary layer is insufficient completely to overcome the counteraction of the pressure
field. As a result the positive pressure gradient produces drag in the boundary layer,
and then stagnation and a return flow of fluid around the body. This phenomenon is
known as separation of the boundary layer,

Formally, separation is associated with the fact that with dP/dx>0 the requirement
T > 0 near the rigid surface is also satisfied even when T = 0.

Since the flow reversal occurs in the region of greatest stagnation, i.e., in the
immediate vicinity of the wall, the point at which separation begins is defined by the
condition

ow,\
( 5 )w_ . (1-7-1)
Accordingly, Ce = 0 at the separation point and friction at the wall disappears.

In reality, boundary layer separation of course does not take place at a point but
in some region.

With by = 0 and c, = 0, we have from (1-6-10) with y—s0

f
i~y (1-7-2)
and in the viscous sublayer region
£ dwn (1-7-3)

Boundary layer displacement due to intense injection is possible with an imper-
meable surface in the flow. An interference pattern of the boundary layer in the state
of displacement from a permeable surface is shown in Fig. 1.5.

In the Prandtl approximation

;)_JJ)JJJJJJJ AEHEERY iil f;{‘ 1} the equation 2‘f;n(;tio:r§11ea; vi:-
TT(DAMMM il T,
oo e
[l mevin o

FIG. 1.5. Interferogram of a turbulent boundary and
layer at an impermeable surface in the state of

displacement according to V. P. Motulevich [80]. - C1Ps [exp fiwu _q
2, \ B
Injection of CO, into air, w0 = 1.2 m/sec, (1-7-5)
j.. =0.17.
w
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Withj_ =0 this formula yields a linear velocity distribution. At the displacement /25
point Ce = 0, and with some finite critical injection a flow is produced in the viscous

sublayer that is slowed down in the x-direction, i.e., an effect somewhat similar to
"forced drought" in jet processes is created.

1.8. Velocity Profile Near an Impermeable Wall with Pressure Gradient
With =0 and y—>0
TN Ty +%y (1-8-1)

A quadratic velocity distribution is equivalent to this distribution of shearing
stresses in the viscous sublayer:

g=n—— 1\ (1-8-2)
where

‘_ 2\32 } _a_

=(5) & (1-8-3)

With §; << the joint solution of Egs. (1-3-6) and (1-8-1) yields a velocity
profile

?=n';%"'++(‘/l — =V 1= )+
il n(l/l—x'n—n)(V, ) (1-8-4)
+--! (Vl_x'q.{-l)(l/l__.;—m_ 1)

With {-—»0 the profile (1-8-4) approaches the profile (1-4-3), i.e., the logarithmic
section in Fig. 1-3, strictly speaking, exists both with small y and with large Re**.

1.9. Velocity Profiles at a Plate and in a Tube with the Flow of an
Incompressible Fluid

From (1-5-4) we have for this case

L
< df
’_'|=SV1.——I— (1"9"1)

"~
[\S)
[=2]

or

|

~ 4t
1—7-5 o (1-9-2)
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Hence, by virtue of the existence of the well-defined dependencies of 1 and T on ¢,
the velocity defect is defined by a function in the form °

S ) (1-9-3)
or
=1-V 0. (1-9-4)
The function
1@ = in (1-9-5)

corresponds to the law of turbulent friction (1-3-6).

Actually, the well-defined relationship between the velocity defect (wo - wx) and

distance along the normal to the wall in the form (1-9-3) is a fundamental property
of turbulent flow in ducts and at a plate. Figures 1.6 and 1.7 present the experimen-
tal data and computed results.

If we resolve the function
s : */? 1-1 into a power series in ¢ in

the region of small ¢, we find
o/ "
V‘; \ . e d&
” ?: ?-+é‘(l—2a;:>-x?-
. ' o (1-9-6)
Q¥ which follows directly from the /27
5 " \\ properties of the functions 7—0(§)
and 1(£) considered above. From
d 1(¢) dered ab F
N (1-3-6) and (1-6-5) we get
4
Al w 4] 20 35 _
2.4 (f) ceo V3 }
"= R
FIG. 1.6. Velocity distribution in the : X
turbulent boundary layer at a flat plate. E o V= 0 2 ,
S=l, — ____ 0, a=1.
4
1—computed from (1-9-3); I—curve drawn (1)_ 9-7)
through test points of reference [213]. Values
of ReX - 107% 0—0.7; @—1.3; 3—1.9; ©O— Noting that
3.2; 9—4.1; 9—5.0; ©—6.8. 2 \i
(?) = h=1- (1-9-8)
we obtain from (1-9-6):
2 \U2 1
(—,'—) == b+ ), (1-9-9)
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1
’ V. —y — 5 1 g
S // = where h=1% % ) 2 ati-'dé is the
L}’) f limiting value.
a’ hd .I
2 - for the two-layer boundary layer
Zl-] z¢° (see Section 1.4)
=T
” -4 . . . - -
- 11,68%* 2
/4 -
= XU
¥ . Hence, with Re — w &, -0, and,
s > by virtue of the boundedness of f;
gy
¢ < - J r 5 _ -37)”2-» (——;—.— In E)~ -;l.- In Re**.
FIG. 1.7. Universal logarithmic law for the (1-9-11)

distribution of velocities in a smooth tube.
1.10. '"Logarithmic' Boundary

I—¢ = n ~ laminar sublayer; II—buffer layer; III— Layer

Eq. (1-10-2); IV, V—eq. (1-11-1) for n =1/7 and

n =1/10. Experimental data (Nikuradze), O—Re It has been shown above that
=4.1x103% @—2.3 x 104 ©—1.1% 10% ®—4.0 the actual velocity distribution for
x 105 O0—1.1 X 10%; @—2.0 X 108 &—3.2 x 105; the flow of an incompressible fluid
a—Experimental data (Reichardt). in a tube differs little from loga-

rithmic. The deviation is more

significant in the boundary layer
at an impermeable plate. Nonetheless, in this case also the logarithmic velocity dis-
tribution satisfactorily describes the actual distribution up to w=10.9. This circum-
stance allows the introduction of the concept of a model turbulent boundary layer with a
distribution law for the mixing path length:

r=xt Y (1-10-1)

Such a boundary layer, withf =b = 0 and p = const. has a logarithmic velocity
distribution over the entire range y:<y<é and relatively simple characteristics, which
in many instances satisfactorily describe a real flow both qualitatively and quantita-
tively. We shall call this model the "logarithmic boundary layer." The logarithmic
boundary layer of an incompressible fluid at a smooth impermeable plate is described
by the following characteristic relationships:

f=0, b=0; p==const;

1
4 "o+x‘ n7
RYAN
o=l——x—.-V—2-lnE.

T-=.—1-L— ]/g'—
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t
|
i

T TS

% 2 xﬁ.
1 —_\-1
n=(n-7.—V2c,) ; (1-10-2)
— 3
2 =c.——l'-ln——x.L—=+—!—-lnRe“.

7 Ao g — V3, | e

With ¢, = 5.5 and X0 = 0.4 the last relationship of (1-10-2) is well approximated
by the relatively simple Karman formula
7
V 2 =250mRem + 38, (1-10-3)
As can be seen the law of friction of the logarithmic boundary layer (1-10-3) is a

particular case of (1-9-9), where as the Reynolds member increases the laws of

friction for the model and actual flows tend to the same limit, expressed by formula
(1-9-11).

1.11. Power-law Velocity Profiles
The logarithmic velocity profile is the envelope of a family of power-law profiles

g=An", (1-11-1)

where 0 <n < 1.

In many cases the use of a power-law approximation for the velocity profile is
quite useful.

For the conditions f =b =0, ;= 1, we have the following relationships:

® = Ee;

1.==n'

l4n

n -
T +n) TF 20’
H =14 2n;

o

(1-11-2)

€y == Re“"';

2
+n’

.=|

2
B=2 (A¥**n) THn

In this case the momentum Eq. (1-2-2) takes the form

ds** ¢ -11-
== (1-11-3)

17



On substituting the value of the coefficient of friction from (1-11-2) into (1-11-3)
and assuming that the turbulence layer sets in at point x = X rit* Ve find

Rewst+m — Restm = L2 e, Re, crit). (1-11-4)

crit 2

Here Re:* is the Reynolds number set up from the thickness of the momentum

rit
loss at which boundary layer turbulence is generated; Rex = WOX/V is the Reynolds /30

number set up in accordance with distance from the leading edge of the plate.

If the turbulent boundary layer develops on the entire plate (Xcrit = 0), then

!
Re** = ('_"‘zﬂ B Re.)Hm ;

¢y = B, Re;™;
m_. : 1-11-5
m - (1-11-5)

.M
2B|Inl l+m
B‘=(l+m) ’ J

The values of the coefficients in (1-11-2) and (1-11-5) for various values of n
are given in Table 1.1.

TABLE 1.1. Values of Coefficients in
Formulas (1-11-2) and (1-11-5)

n
Coefficient

) oo ows | e I 1o
A 8,74 9,71 10,6 11,5
Feoo 0,0975 | 0,0890 0,0818 | 0,0757
H 1,28 1,25 1,22 1,20
m 0,250 0,222 0,200 0,182
B 0,0252 0,0206 0,0190 0,0148
=, 0,200 0,182 0.167 0,154
B, 0,0576 0,0450 0,0362 0,0308

In practice the formulas for n = 1/7 can be used in the range Re** < 104, Figure
1.8 gives a comparison of the available test data with formulas (1-10-3) and (1-11-2).

1.12. Wall Turbulence near a Rough Surface /31
When the order of the thickness of the viscous sublayer becomes equal to that of

the height of the roughness, the flow conditions near the wall change. However, this
is not reflected in the laws of friction in the turbulent core flow.

18
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FIG. 1.8. Law of friction for the turbulent boundary
layer at a flat plate: 1—formula (1-10-3); 2—for-

mula (1-11-2); B = 0. 0256; m =0.25; points—exper-
imental data [164].

As a consequence, the only
change is the definition of the
wall region which is the limit
of developed turbulent flow.

For flow over a smooth
impermeable surface this
limit is of the order

) (1-12-1)

0o~ *w
while for a rough surface it is

yi~e, (1-12-2)

where € is the roughness height for a uniform roughness or some "effective height' for

nonuniform roughness.

Obviously, the measure of the effect of roughness on the turbulent flow around an
impermeable surface will be

o.w.
M=
2
Ig~ \
81m¢ S .
5 ; .
5 o~ R il ——
y N i o %,~:. o
! st o]
.3 I =l Lt 11
25 R S
. el )
20 ,_;,___‘__X 2 W
15 Mw
1op—t SN
10 ‘
$ 681° 2 4 648n1° 4 680° 2 4 68M° 24
Re =94
v

FIG. 1.9. Drag law for rough pipes.
flow; 2—turbulent flow in a smooth pipe.

1—laminar
Experi-

mental data of Nikuradze (sandy surface): ©®—R/A
=507; ©—252; @ —126; ®@—30.6; »—15. Experi-

mental data of Galavich (industrial roughness):

A™R/a= 1300.

(1-12-3)

So long as the roughness
protuberances are "submerged"
in the viscous sublayer they do
not influence the transfer
process.

Therefore with 7 _ less
than some value, the surface
roughness is ""hydrodynami-
cally smooth." The laws of
flow around a rough surface
were first investigated in
their pure formby Nikuradze,
based on a uniform granular
roughness.

The generalized result of
these investigations for flow
in circular pipes is shown in
Fig. 1.9. In the region 7
< 5, i.e., when the rough-
ness does not protrude beyond
the limits of the region in
which molecular viscosity is

completely dominant, the surface is hydrodynamically smooth.

In the region n_ > 40 molecular friction essentially has no effect on the overall
hydrodynamic drag and the quadratic drag law is clearly expressed.

19

/32



CHAPTER 2
THERMAL AND DIFFUSION BOUNDARY LAYERS

2.1. The Differential Equations of Energy and Diffusion

The equation of heat propagation in a steady, homogeneous, plane boundary layer
has the form

dw, \? P 9i i
—%‘-y'-+qv+»(—;';—) + we g = P g + Py 5y (2-1-1)

Here ¢ is the heat flux in the direction of the y-axis attributable to the molecular
and turbulent heat transfer; is the volumetric density of all energy sources and

sinks at a given point with the exception of heat evolved due to work performed by the
flow.

In the laminar boundary layer

or
qa—la, (2-1-2)
and in the turbulent boundary layer
or J— ~
9=—rG5, —Cp (1 =), (2-1-3)

where 3;.= p—""g—;_%'—v"—e’ is the thermal analogue of the coefficient E in (1-1-6).
¥

For the actual quantities it is convenient to represent the equation of heat propa-
gation in the form given by M. F. Shirokov [99]:

2
@ Jr d w ai* 9i*
W {Z:Ty_ [n + (Pr— 1) .—;]} + gy = pu'e _(;_x‘ + puy "““;y (2-1-4)

or, with Cp = const.

9 ) w’
j‘? {la— [T'-}-(Pf— l)—zi]} +q,=
or* or*
=Cpp¢,-ax—+CPpw,d—y. (2-1-5)
Here
w

*=i4 7‘ (2-1-6)

is the stagnation enthalpy, '
T*=T+ o, (2-1-7)
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is the stagnation temperature.

C
Pro—2 (2-1-8)

is Prandtl's number, which describes the ratio of the intensity of molecular friction

and molecular heat conductivity. In the case of gases this quantity depends primarily
on the valency of the molecules.

The energy equation for the turbulent boundary layer of a compressible gas, with
chemical reactions taking place, is conveniently written in the form [771:

ai.z oy ad
™. 5 + oy oy oy W+

+tly+%{[c%(l-e—l)+g—;(l.es—l)]zit 'Zy‘ }+ (2-1-9)
o {[o (o) om (-t 452

or, for the case Pr = PrT =Le = LeT =1,

0"‘; lx.: 0
w. 5+ Pw.—dy—‘=3;(q;)+qv- (2-1-10)
where
d‘.
» By €.
®= (pT*PT.) K
Pr=iy + 2 ¢ s =2 Cilgs (2_1_11)
i
r
i1==SCP dT+i?;
0 ]
A is the concentration by weight of the i-th component; i? is the heat of formation of /34
the i-th component.
Taking account of Eq. (2-1-11) we have:
gz =y + 9er0 (2-1-12)
where )
LTI
A 0i% oy iy

Qz,l='"‘5; oy "y = T Pry Oy (1 — ),
n

where Pr,=c,,% is the turbulent Prandtl number, C,= 2 e:C . For a flow of
i=1
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conducting fluid in an electric field, in the region of small magnetic Reynolds numbers
and Hall parameters, we have

qv =—iUE(.
where Ey is the electric field intensity in the y-axis direction.

The equation for the dispersion of matter in a stationary, plane boundary layer
takes the form

o 0 a9 .
R Tt Y , (2-1-13)
where ji is the specific flow rate of the i-th component in the y-axis direction attribut-
able to molecular and turbulent diffusion; 'ci is the rate of formation of the i-th compo-

nent due to chemical reactions; c is the concentration by weight of the i-th component.
In the laminar boundary layer of a binary mixture

dc, ac, (1 —¢,) QL] (2-1-14)

jy=—pD\s [o—y'*" T dy

In cases of interest in practice the terms defining thermal diffusion are small in
comparison with the diffusion term (less than 10%). Therefore, we can assume, with
adequate accuracy

. 06,
Iy == —¢Dis TR (2-1-15)
In the turbulent boundary layer
dc — -
hh=—pDis 5, — pouce (1 =), (2-1-16)

where F":‘Tw is the diffusion analogue of the coefficient § in (1-1-7).
sl

Prandtl's formula (1-3-6), applied to the diffusion problem, is written as

:dw, Ocy
Je=plly W—éy—(l—‘io). (2-1-17)
where lD is the diffusion mixing path length. The quantity uT/pDT = ScT has the sense
of the turbulent Schmidt number. Correspondingly, pDTCp/ Ap = Le, is called the

turbulent Le\lvis—Semenov number. If we introduce the concentration of the i-th chemi-
cal element ci, ignoring the chemical compound in which it is found, then, in the

absence of intra-nuclear transformations, we have from (2-1-13):

oz 9 7,
P 5 + pw,—u‘T‘=—d—yh (2-1-18)
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where j_i is the specific flow rate of the i-th element in the y-axis direc-

tion.
2.2, Similarity of the Enthalpy-, Concentration- and Velocity-Fields

As follows from Egs. (1-1-3), (2-1-4) and (2-1-18), if the condition Pr = Sc
= PrT = ScT =1 is satisfied, and also with f= 0, i>*:0 = const, CiO = const, iw = const,

Ciw = const, q, = 0, similarity must exist between the distributions of velocity, total

enthalpy and concentration of the chemical elements

oW Tl B—tw 2-2-1)
50 Cio—Cew

With q, =0, Ep = const, 61 =90, MO << 1, and without chemical reactions, we have
from (2-2-1)

= . 2-2-2)

Consequently, for the conditions stated, the three-fold Reynolds analogue is
satisfied:

Sw qr w _ fow . _o_
?o':- po®e (i®r0—ix ) T pete (Fre — 1) (2-2-3)
where
w___ %, 9ew =St ;
w2y 2w (Trg—ir ) &
Jsw R
MW (Ca—Ciw) StD'
In the absence of chemical reactions in the boundary layer
St=— I g —__ few 2-2-
b 3 T (‘ o. — W) StD Pes (C“ e w), ( 2 4)
and with constant specific heat /36
— qw
St: - Canwo (7% — Tw) ) (2-2-5)
If Pr # 1, as a first approximation we should replace iEO by i;_,“w (equilibrium

enthalpy) in Eqs. (2-2-3) and (2-2-4), and Tg by T\’:’ (equilibrium wall temperature) in
(2-2-5). In this way i;"v and T;“V are the enthalpy and temperature at the thermally

isolated wall surface.
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It is known that

o?
Py =ivtr o (2-2-6)
for the case Cp = const
2
w,
I =Totry (2-2-7)

where r is the stagnation enthalpy (or temperature) recovery coefficient. In the gen-
eral case the recovery coefficient r depends on many factors [43]. For an imperme-
able plate, for the laminar boundary layer

r=Ppr'? (2-2-8)
and for the turbulent boundary layer
raPr' . (2-2-9)
Also, the correction factor K
[4 -
St = St,= - K. (2-2-10)

must be inserted in the three-fold analogue (2-2-3) with Pr # Sc # 1.

For gases, with PrT = ScT =~ 1, this factor is adequately approximated by the
formula

K ~Pr=" aSc™?°. @-2-11)

The Prandtl and Schmidt numbers are a qualitative measure of the ratio between

the thicknesses of the dynamic-, diffusion- and thermal boundary layers, as given in
Table 2.

TABLE 2.1. Relationship between
the Thickness of the Thermal-,
Diffusion- and Dynamic-Boundary

Layers
Pr, Sc <10 1 >1
4y 3, ‘
53| >0 1 <i

Differing from the molecular Prandtl and Schmidt numbers, which should be
viewed as physical parameters of fluids, the corresponding turbulence analogues
depend not only on the physical properties of the fluid, but also on the hydrodynamic
state in the flow. This presents a major difficulty in the solution of problems in
turbulent heat- and mass transfer.
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The experimental values of the turbulent Prandtl and Schmidt numbers for the wall
turbulence region lie in the range 0.85-0.90. Values of the order of 0.5 are found for
plane turbulent jets. In more complex situations—for example in the boundary layer
separation region—the turbulent Prandtl numbers, as shown by the measurements
made by Z. Zaric [255], may be considerably less than unity.

In addition, in the general case the turbulent PrT— and ScT— numbers are not

constant over the boundary layer cross section. Experiment has shown that the tur-
bulent Prandtl number may depend significantly on the magnitude of the molecular
Prandtl number, the level of the free-stream turbulence and on the Re number.

However, for fluids with Pr ~ S¢ =~ 1, the condition PrT = ScT = 1, first formulated by

O. Reynolds in 1874, remains a good approximation for calculations of the turbulent
thermal- and diffusion boundary layers.

2. 3. Enthalpy Factor in a Gas Boundary Layer

In the boundary layer of a gas obeying the Clapyron-Mendeleev equation of state, by
virtue of the condition dP/dy = 0, the gas density is unambiguously related to the
thermodynamic enthalpy by the relationship

;=f=:*" (2-3-1)

For a homogeneous gas (Pr =~ 1), without chemical reactions, and with Cp = Cpo’
using Egs. (1-1-4) and (2-1-4), we find

".

TT-—_‘:V:T = (2-3-2)
i T » 3
"R =Y Mo — (¢t — 1) e, (2-3-3)

. - : . * J— * . _- * N
where P = lw/ i = Tw/ T is the enthalpy (temperature) factor; %o 10/1o To/ T, is

the adiabatic kinetic enthalpy (temperature) factor; Ap = - ;b: the heat transfer factor.

The case Ay = 0 relates to flow around a thermally-insulated body; with Ay >0 the
body gives up heat to the gas flow, and with Ay < 0 the body takes up heat from the gas
flow.

With Pr # 1, and also with dP/dx # 0, Egs. (2-3-2) and (2-3-3) are inaccurate.
Taking Egs. (2-3-2) as a basis, we write

,'W—:% =@ o, (2-3-4)
P=idr@ ‘;:’ (2-3-5)
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The forms of the functions r(¢) and €(¢) in the general case depend on the Pr num-
ber, the pressure gradient, the mass transfer and other "perturbing' factors appearing
in the boundary conditions for the dynamic- and thermal boundary layers.

Taking Eq. (2-3-2) into account, we can write

i — iy

e — Iy

= [1 +(1—r *—W‘J—] w—(1—n¥ta (2-3-6)

With € =r =1, Eq. (2-3-6) goes over into the known Crocco integral (2-3-2).
At the limits of the thermal boundary layer, we shall require that the quantity

-ty
w w

satisfy the same conditions as does w at the limits of the dynamic layer. Then, with
y = 5,1., D =1 and with i* = i*w, r(GT) =r, As pointed out above, in the turbulent

boundary layer the recovery coefficient is about ¥Pr, i.e. for gases, close to unity. /39
Therefore, without significant error, we can take r(¢) = r, and
A
I'zl-}-r_ T (2-3-7)

Then, from Eq. (2-3-4), we have

ilig=$—Abeo— ($*—1) 02, (2-3-8)

where ¥ *= i:v/ i0 is the kinetic enthalpy factor. With a power-law approximation for
the velocity- and enthalpy fields

o=t 3=t (2-3-9)
we find that
d—epe"T, (2-3-10)
where
0 =03)".

Far from the boundary layer separation point n = D and the relative similarity
O=cmw. (2-3-11)
exists.

Figure 2.1 gives a comparison between formulas (2-3-2), (2-3-6) and the tests of
Danberg [125] and Hill [155]. The tests covered a rather broad range of Mach numbers
(up to 9.1). As can be seen from the diagram, the tests on the plate [125] agree with
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the adopted relationship with € =1.0. The tests in

U=
s conical nozzles [155] agree satisfactorily with Eq.
P tw . 2} (2-3-6), with € = 0. 5, in the wall region.
WF // . } 2.4. Integral Energy and Diffusion Relations /40
M3
46.' /2/ P _‘; f On integrating Eq. (2-1-10) with respect to the
7 » y-coordinate over the boundary layer thickness, and
i "é{-’ taking account of the equation of continuity (1-1-5), we
21 —t obtain an integral energy relationship for the two-
o I o 4, ' dimensional boundary layer
7 ! [ W
Y 7 R T S R 7 R
ds** 3** d
Fig. 2.1. Comparison be- ‘+w Aivy d, (@, 4i%)) + ,.‘ d::+
tween formulas (2-3-2), ' (2-4-1)
(2-3-6) and experiment. + "Vaf. T = Ger_
1—Computed with (2-3-2); pwedi®y W T pwadi®y
2—computed from (2-3-6), X *
€ =1.0; 3—computed from where Ai=1_ -1 is the difference in total
— z W zZw
(2-3-6), € =0.5; 0—Dan- enthalpies and
berg's tests [125], flat
plate, M0 =6.4; ®—Hill's
tests [155], conical nozzle, . — _:W)dy (2-4-2)
M = 9.1. v
o
is the total energy loss thickness, similar in its prop-
erties to the momentum loss thickness 6** (see
(1-2-4)).
With Cp = const and in the absence of chemical reactions, we have from (2-4-1):
ds**, 3**r 4 3**rdpe
dx “wAT dx gy @ebT) +—— pedx +
(2-4-3)
93 e ? o Ger .
+C PReweAT Iw=¢ pheie AT
where
. . |
AT =T\ —T*; a",=5$m( — po =7 ) 4y ;
We introduce the following notation:
Pead**y |
Re** = —?‘—‘. (2-4-4)
_ 1 daiy | A
"_A_i;ﬁ' (2-4-5)
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~ s pew,L
W= PewAip Re,_= O (2-4-6)

Then, in analogy with (1-2-10), we find

d Re**.. -
R 4 Re*ufi + (3, — fu) Re, =St,Re,. (2-4-7)

Similarly, for the axi-symmetric case, we have

1 d(8i) 1 dR d ,
he= E;——d; +x 7 =7 lIniR)]. (2-4-8)

For flows of conducting fluids in electric and magnetic fields, in the region of
small magnetic Reynolds numbers and Hall parameters, and taking the expression for
q, (see Section 2.1) into account, we obtain the integral energy relationship in the

form [18]:

a) for the electrode wall

a3 ., 1 d (pewedi)
dx +3%% [ IRZNY; dx + (2-4-9)
1 di* 1 .
tur G CHeA )| —fu=st,
or
d ¥
R 4 Re™,, f,y — wRe, =Re,St,, (2-4-10)
where
3 ( (— é ) dy
.H‘___J_ST_; (2-4-11)
1 dAi 4 1 di°,
In=watawW—H) (2-4-12)
b) For the insulator wall
dase . 1 d
‘E“ 43 [WF; (Powodi) +
(2-4-13)
1 di*, .
+_AT_¢£17 (_H—Hi)] —Jw=S$t;
or
dRe*;y - -
T_ +Re i ,r: - 7W Re‘- = Re'_ Stxn (2"4"14)
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where /42

For the axi-symmetric boundary layer, in analogy with (2-4-8), an additional term
1 dR .
R @ appears in (2-4-12).

Integrating the diffusion Eq. (2-1-18) over the boundary layer cross section, taking
into account the continuity equation, we obtain

dB“,, 8”0 d - l _'
ax +rwan a CRAL) = g =Sty (2-4-15)

where A61 = Ew - Eo is the difference in weight concentrations of the diffusing element

ip
at the wall and in the flow; 3"D=5 pw (l — ;_ ‘a‘;) dy is the mass loss thickness;
i —

Sty,= —w___ is the Stanton diffusion number; jy, is the flow of diffusing element at

T pewe (Gy—3)

the wall. In the general case jiy # jw-

Introducing the nomenclature

__hwdth ., 1 d(a)).
Re“p—' M " fD 22  dz | (2-4-16)
Re =l’0"o'—
L p*
we find

dRe‘.

- +-Re**, f, — w Re, = Re, St (2-4-17)
For an axi-symmetric boundary layer

=g 10 (AZR)]. (2-4-18)

For a given thermal load and diffusing substance at the wall, from Eq. (2-4-7) and
(2-4-17) we have (with q_ = 0)

Re**, — Ail‘x {(Re“u Ay, +

1 ¢ Y
+,,—.Ilqm+At zlw]dx}; (2-4-19) /43
N
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Re"o=-zlg { (Re"DAE)x:,'-I-
3 [l + 837, d)- (2-d-20)
%o

2. 5. Approximations of the Distribution of Thermal- and Diffusion- Flows over the
Boundary Layer Cross Section

We shall approximate the distribution of thermal and diffusion flows over the
boundary layer cross section by a third-order polynomial, whose coefficients are
found from the differential energy and diffusion equations, with boundary conditions

with y = 0’ q: —_— q[w'

1|=inw;

with y=38; ¢ =0; (2-5-1)
with y=—80 jl =0.

Integrating Egs. (2-1-4) and (2-1-13) over y, with y — 0, we find

4
G~ Gy — [ G dy + iw (0 — w0y (2-5-2)
o
f 0
i“\'i'W_Jc( dy+ jw (6, —Ciw)- (2-5-3)
Conditions (2-5-1), (2-5-2) and (2-5-3) are satisfied by the following approxima-
tions:
l ~
—1
- o~ ( St (SquEl +b,.% ) (2-5-4)
9=a\1+ TF 2% ;

1
- - ( st;‘ 50, dED+b|DC ) (2_5_5)
‘1-110 l+ l+2§D M

where § = a5, /qzw; Ji =i1/iyw are the relative thermal and diffusion flows;bﬁ =~j'w/StZ; /44
b D" j1w /S'cD are the thermal and diffusion permeability parameters, 'Eio and T;o are the

distributions of thermal- and diffusion flows under '""standard' conditions in the absence

of perturbing factors; € = (E—Ew)/ ('EO—EW) is the dimensionless weight concentration of
the diffusing element.

In conformity with the adopted approximations
Qo=lu=1—3"+2. (2-5-6)
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2.6. "Logarithmic' Thermal- and Diffussion-Boundary Layers

We introduce the thermal and diffusion analogues of the "logarithmic' boundary
layer considered in Section 1. 4.

It follows from Egs. (2-1-17) and (2-1-12) that the ratio 7/q = 7/j; is constant over

the boundary layer cross section for the case of flow of a fluid having constant physi-
cal parameters around an impermeable plate. With boundary conditions TW = const

and cW = const. Then, with Pr =Sc = PrT = ScT =1, taking into account (2-1-11) and
(2-1-17), we find

1
Pr=c"4 P In 7*, 2-6-1)
where, for the thermal layer

9 qwy
V=tr=g. == Tpr g5’ (2-6-2)
and 8° =V ¢.AT/(p,w,Cp) is the thermal analogue of the friction velocity; and, for the
diffusion boundary layer

O —Cw, hiwy .
¥ == 1= p = Paee (2-6-3)

Ac® = V[ o/ (pawoScy) - is the diffusion analogue of the friction velocity.

The computational formulas for all parameters of the thermal- and diffusion
"logarithmic" boundary layers are established in analogy with the dynamic boundary
layer and have the same form as Egs. (1-10-2), (1-11-1), (1-11-2) and (1-4-3), only
in the case of the thermal boundary layer Prp should replace ¢ and, for the diffusion

boundary layer, should replace ¢, in conformity with (2-6-2) and (2-6-3).

D

With Pr #1 and Sc # 1 a correction (see Sect. 2.2) should be inserted into the laws
of heat~ and mass transfer. For gases (Pr ~ Sc ~ 1), with a power-law approximation
of Eq. (1-10-3), these laws can be written in the form

S!.= % Pr-e.s Re.;."m (2_6_4)
and
B e
Sty = —5-Sc~ %1 Rejy ", (2-6-5)

k%
where the values of B and m are selected from Table 1-2. For the region Re

T
= Re**D < 104, B/2 =0.0128, m = 0.25. With simultaneous development of the

dynamic, thermal and diffusion boundary layers at a plate, using the integral
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energy and diffusion relationships (2-4-7) and (2-4-5), for j =0, q, = 0 and boundary
conditions TW = const, Co = const, we obtain

Nu, = 0,0288-Re%® Pres; (2~6-6)
Nup, = 0,0288.Re2® Sce.s, (2-6-7)
4 oy ™ Lgy 1 4 -
NuPr /. Sty SC
g 107
: F_ s
‘ 3dl
Qo R e (1)
v’ 2004 [ M rwr Y SOEAS
ey LT~
i QW N '\'r\
f oSO (.74
J]
e
2 P 0’
o 1o | Re, Fig. 2.3. Mass transfer at a flat plate.
05 2 3456760° 2 3 Straight line—calculated from formula
StDSc°° 6=0.036 Re;o- 2, derived from
Fig. 2.2. Local values of X
Nug with a subsonic flow (2-6-7); Points: O—Wade, X—Pascual,
X O —Powell, ® —Powell and Griffiths,
of air around a plate. A—TLur'e and Mikhailov.
Straight line—computed
from formula (2-6-6);
points—data from B. S.
Petukhov [86].
; Sty T
5
4 \o‘-\ s
° B Fig. 2.4. Law of heat transfer at a

] O~
] Frr— flat plate.
L s Straight line—calculated from for-

‘ﬁ~. mula (2-6~4); Points—test data [182].

J
2
ﬂ'»JL Rer”,

Figures 2.2 and 2.3 show comparisons of the data of B. S. Petukchov, A. A.
Detlaf, V. V. Kirilov [86] with formula (2-6-6) and the test data of various authors
with formula (2-6-7).

Figure 2.4 presents the test data of Whitten, Moffat and Kays [182] on the heat
transfer at a flat impermeable plate, for the condition T = const compared with the
calculated values from formula (2-6-4).
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CHAPTER 3
THE BOUNDARY LAYER WITH VANISHING VISCOSITY

3.1. Degeneration of the Viscous Sublayer

As the viscosity decreases, with other conditions remaining unchanged, the dynamic
layer becomes thinner, and the flow increasingly takes on the characteristics of the
flow of an ideal fluid. However, in such a situation the rates of change of the thick-
nesses of the turbulent core and viscous sublayer turn out to be unequal.

As has been shown in Section 1.9, as Re — oo, £, — 0; i.e., the thickness of the
viscous sublayer falls off more rapidly than does the thickness of the entire boundary
layer as the Reynolds number increases.

For a more general consideration of this problem it becomes necessary to intro-
duce the concept of a fluid with vanishing viscosity.

A characteristic feature of this model fluid is that its viscosity p — 0, but never
actually goes to zero. Hence any fluid flow with vanishing viscosity has Re — o and

forms a turbulent boundary layer around a rigid surface. /47

For the laminar sublayer it follows from (1-6-10) that as £ — 0

JwRe** c; — 289

AT axe-1 | -
= et — 1) 431 g, (3-1-1)
o~ 77 Rev ( )+ -
where
‘ Z=7w Reiigii-l‘ ]
With?W = 0, we have from (3-1-1)
o~UReriire -1 (52:_ E— -t e’) (3-1-2)
and with f =0
o~ (@ —)). (3-1-3)
2w
Further, by definition, we know
0<o<]; 0<3** < oo. (3-1-4)

Hence, if we attach the subscript 1 to the quantities w and ¢ to describe the nomi-
nal limit of the viscous sublayer and of the turbulent core, we see that for any condi-
tion, as Re — o, & — 0.

Thus, in a fluid with vanishing viscosity the viscous sublayer degenerates, and
the role of viscosity reduces only to the creation of the effect of ""attachment" of fluid
to the wall, i.e., assuring the conditions w = 0 with £ = 0 and the dissipation of the
energy of turbulent motion.
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These properties distinguish a fluid with vanishing viscosity from an ideal fluid and
allow the formation in it of an ideal turbulent boundary layer—i.e., a layer with e 0.

3.2. Degeneration of Density Fluctuations

The. effect of density fluctuations attributable to the inhomogeneity of the tempera-
ture field on the Reynolds stresses is expressed by the quantity

AT R
p=p it on?

oxs
Since the turbulent Prandtl number PrT ~ 1, we can take as an estimate [44] /48
0~0, ;T ~v* ::.' (3-2-1)
Then
B (24 )/ 5 ) por. (3-2-2)
From the equation of continuity we find
Wy d3 3 die* (3-2-3)

W, ~ dx NB—“ dx '
i.e., in view of the momentum equation we can assume that wy/wo ~C P

Thus 5 decreases as the coefficient of friction decreases, and, since the latter
tends to zero as Re — oo, then also g — 0.

3. 3. Relative Drag Law

We introduce the quantity

Cte

v — L)Re”, (3-3-1

where 0 is the coefficient of friction for some standard boundary layer, and compar-

ison is made with Re** = idem.

We shall choose the simplest possible boundary layer as the standard--namely, a
turbulent, isothermal boundarv layer, without pressure gradient, at a smooth and
impermeable plate.

We integrate Eq. (1-3-6) so that
Ve~ 152
VA dkd =S (—P.—"—) de, (3-3-2)
3
-
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where

s

With Re — @, in accordance with (1-9-6) and (1-9-11) and with 'B' - 0.
i —Ing, _9_
Z—O-—E—R(:Tp (3-3-3)
or, if & ~ Re**_n,
Z—n. (3-3-4)

Withf=0, n=1; Withf=fcrit’ n=2/3, i.e. as Re —~

2<z< (3-3-5)

Thus, in an ideal turbulent boundary layer—with a gradient-free flow rigorously,
and otherwise approximately,

R T )
{(P_;) do—1. (3-3-6)
5 P

This integral expresses the remarkable circumstance that although the absolute
magnitude of the coefficient of friction also tends to zero in fluids with vanishing vis-
cosity, its relative changes when influenced by perturbing factors (nonisothermal state,
compressibility, wall permeability, etc) remain finite.

Equation (3-3-6) defines the limiting relative drag laws of the turbulent boundary
layer. Here special attention should be given the circumstance that this equation
(which describes a set of important properties of the turbulent boundary layer), in its
general formulation, does not depend on any empirical constant.

3.4. Relative Law of Heat Transfer

From (2-1-12) it follows that

| 172
ve _ ([29 00 08 —4-
2y = S(;. 3%, oE,) L (3-4-1)
Ta

where

St, \1/2 PR LY
Z = 2 —_— -, 3-4-2
T (P'r ) S(l —p,) Iy ( )

(W]
w
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4 =(_St_) and ¢ are defined over Ai.
Re®*p

The properties of the quantities gTi, 'B'T and ZT are the same as those of their
hydrodynamical analogues. With Re — oo

1 2
i . f~~ 12
T _. pq 0w 0%\ . | 3-4-3
s [S(q. & | 9 (3-4-3)

If the temperature and velocity fields are similar, then £ = dw/et= 28 0/85,1,,

Eq. (3-4-3) goes over into (3-3-6) and \I‘s= v,

£

But in the general case, with substantial infringements of similarity of the tem-
perature and velocity fields, the functions ¥ and \Ifs do not agree. Thus, for example,

in the diffusor-flow region of the turbulent boundary layer (f < 0), ¥ can be consider-
ably less than unity, while with finite Reynolds numbers \I in the diffusor-flow region
may change very little.

3. 5. Relative Law of Mass Transfer

From (2-1-17) it follows that

: ~— ~ \ 2
y__ p] dw dc
ZD‘I‘D = f (T ‘Te;- o—E;) dED' (3—5-1)
D}
where

' 12 . o\ dE

z,= Stoo S( ) =2. (3-5-2)
' Ip

Stp,

¥, (Si;o)k. is the relative law of mass transfer.
It is not difficult to show that the properties of the quantities §D1’ 'B'D and ZD are

like those of their hydrodynamical analogues. Hence, with Re — oo, we have

1

i
¢/ 0w o¢ ' _E_

J&Eﬁ)%“ (859

T,—
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If condition (2-2-1) is satisfied, i.e., if similarity exists between the velocities,
enthalpies and concentrations, then

q’p;‘—‘l’s=‘¥. (3-5-4)
However, in the general case this similarity may be infringed. In particular, in
the case of a gradient gas flow, the law of friction can differ considerably from the
laws for heat- and mass transfer. The analogy between heat- and mass transfer, i.e.,

the equality ¥ = \I/D, is maintained over a wide range of change in the determining
parameters.

3. 6. Distributions of Velocity, Temperature and Concentration over a Turbulent
Boundary Layer Cross Section at High Reynolds Numbers

Equation (1-5-4) can be reduced to the form

Viden)) wn & (3-6-1)
P )

2(1—p

_‘/ (3-6-2)
dw, a—p

where w 0 is the dimensionless velocity under standard conditions.

or

Integrating, we find

h/ "% da _j‘/u. % 4t (3-6-3)
- T

With Re — oo, as a consequence of the increasing fill-in of the outer portions of
the turbulent boundary layer, the velocity profile begins to be decisively determined by
Prandtl's law—i. e., a situation is produced such that the quantity T becomes essentially
independent of perturbation factors in the derivation of the laws of friction and heat
transfer. If we also take into account the asymptotic properties of the boundary layer

(B — 0), we obtain
]
Cie - _‘E
) M- (3-6-8
t

Consequently

j“/ P do=1—o,. (3-6-5)
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If we set £ = £, in Eq. (3-6-4), then, as Re — o, £ — 0, and formula (3-6-4)
goes over into the limiting formula. Hence, for large Reynolds numbers we have,
approximately

M
S =V‘1’°° (1 —w0) (3-6-6)

»w

or, in consideration of Eq. (1-4-3)

‘;I/z de o
S ==—yT, ) Lt (3-6-T7)

Similarly, formulas for the distributions of enthalpy and concentration can be
found:

1
_d® o 1 e
5 ‘/—:— V50 35 VStso 0% (3-6-8)
Pod_

and

= T St InE, .

'/ .

Henceforth, Egs. (3-6-7), (3-6-8) and (3-6-9) will be used to derive the limiting
distributions of velocity, temperature and concentration under the action of various
perturbing factors.
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: CHAPTER 4
LIMITING RELATIVE LAWS CF FRICTION AND HEAT TRANSFER WITH
A LONGITUDINAL GAS FLOW AROUND AN IMPERMEABLE PLATE

4.1. Limiting Law of Friction for a Non-isothermal Boundary Layer on a Flat Plate

For the conditions being considered, it follows from Eq. (1-6-15) that t/1,= 1, i.e.
the non-isothermal state and gas compressibility should not affect the distribution of
the turbulent shearing stress over the boundary layer cross section with the approxi-
mations adopted.

7] T The results of an analysis of the effect of com-
N ! pressibility on the distribution of T given in [175]
ae ' : ! (Fig. 4.1) are a direct confirmation of this deduc-
5 tion.
a5 S
I . Taking into account Egs. (1-6-15), (2-3-1) and /54
o : (2-3-8), for ¢ =1, we have from Eq. (3-3-2):
i ! ]
i ] 9iLe )
; ; | L S ! arcsin 24— D+ 4
s ; ! . *—12Z E
NS ' (4-1-1)
e E v - arcsin 287 = D@ + 3% J"
FIG. 4.1. Effect of com-
pressibility on the distri- where
bution of turbulent shearing
stress over the boundary E=V" 4(({)-»_ l) (q,& + A\'J) + A’f: .

layer cross section (ac-
cording to [175]). 1—M

=0; 2—M = 5. With R— %, w;— 0and Z — 1. As a result, we

have

1 . A ' 2
¥ = =1 — arcsin Tq' . (4-1-2)

[arcsin 207N+ 8 El) + 44

Formula (4-1-2) defines the relative limiting law of friction for a non-isothermal
turbulent boundary layer at an impermeable plate. It does not contain empirical turbu-
lence constants and is not related to any semiempirical theory of turbulence. The
quantity c fo in the limit laws can be established both on theoretical grounds (for exam-

ple, in terms of some semiempirical theory of turbulence for non-isothermal flow) and
directly from the experimental data. For a supersonic gas flow around a thermally-
insulated plate, (Ap=0), we have from (4-1-2):

_ (arcslnl/q':—_.._l)' (4-1-3)

ea v =1

or since
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¥~ 1=,

—— g

._(‘"‘”‘-l/’k;l) (4-1-4

o™ “&—1 ’ ~1-4)
M"/' 2

For subsonic gas flow ($*—1), we find from (4-1-2) /55
2 2
v — ____-_] (4-1-5)
® [ Yiv+1
"y Figure 4. 2 illustrates the dependence of ¢ _ on M and Ay,
. k— l
7.2\¢ 5 as computed from (4-1-2), in which case $*=14r ——~M0
10k3 ‘ i Spalding [164] has proposed a relatively simple approxima-
\\ \ R tion of (4-1-2) which, to within a few percent, is valid up to
aaz | 2 M0 ~ 6.0, and has the form:
A
\ \\\\ 1 12 k—-l ’
TN R (CTILe S K
4
4 \ Assuming r = 0.9 and k = 1.4, we obtain
02]

” v = {+ [( T \V2 1 1] +o, 035\, |G (4-1-17)

024 &+ ¢

FIG. 4.2. Depend- For the subsonic gas flow region we can assume

ence of ;boo‘ on MO v ¢ (4-1-8)
and Ayaccording to

the limit formula in the range 0.5 < § < 3. 0.

(4-1-2). 1—Ayp=1;

2—AYP =0.5; 3—AY Under some conditions it is convenient to introduce the
;_E’Ai____A_z!{’: e;—OA?p’ relative coefficient of friction ¥ _= (c:—:‘)ne“ w’ which involves
= -2; 7T—Ayp =-3. only the effect of the non-isothermal state. Here ¢ is the

fm
coefficient of friction with Ay = 0, with the same values of
Re™** and Mo.

From Eq. (4-1-2) and (4-1-3) we can write two limit expressions for Ve

with §*—1 @ .—_-( V‘+l) (4-1-9)
with §*— o0 W= [ arccost=! _1-10) 156
th ¢ oo ‘l”m ( arccos¢+l) (4-1-10)

where $=¢/9*=Tw/T*w is a generalized temperature factor.
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TABLE 4. 1. Effect of the generalized temperature
factor on the relative laws of friction and heat-
transfer with Re — <«

3 002 |05 |07 | 1 |2 3
Ty 4 1,78 | 1,38 | 1,15 1 | 068 | 0,54
¥ oo 4 {202 | 1,499 | 1,18 ) 1 [062 | 044

Table 4.1 shows the comparative results of computing with formulas (4-1-9) and
(4-1-10).

As can be seen from the table, the relative influence of the temperature factor on
the limiting law of friction is almost identical for both subsonic and supersonic flows.
Therefore, in practical calculations with large Re numbers we can adopt a compara-
tively simple interpolation formula.

— 2
Zarcth.Vrk;l 1
| — —_— J . (4-1-11)
V rg+)my 55
20 - -
v For the caser =0.9and k = 1.4,
J we have
b=
~ [ 4. Tarctg (0,424 M,) 2
w \ w~ Tw .
- [ 713 (4-1-12)
34 Tw
P72 A comparison of calculations

’ 9¢ 48 12 16 20 26 28 32 J,ls 40 with (4-1-12) and the exact formula
(4-1-2) is shown in Fig. 4.3.
FIG. 4.3. Comparison of calculations with

formulas (4-1-2) and (4-1-12). Calculations With relative similarity of
with (4-1-2): 3 =y/ Ypp With ¥ according to velocities and enthalpies we find
4-1- . v, 1 ¥
(4-1-2) and WM according to (4-1-3); 1—y T 1 [arcsin 2 (4% — 1) + eAd
=1; 2—y*=2; 3—y *= 18; 4—calculated from $*—1nz E
4-1-12), i.e.v= /2 _\. . . _
(4-1-12), i.e v_( = ) —arcsin 24 1[):_(»,+-A4a :

ot '

w

(4-1-13)
where € is the off-similarity factor.
With Re — o, w; — 0, Z — 1 we have

(a) Withe <1
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1y , 2(4° — 1) + b
Y= [arcs'“ Vi =D F+a0) + (39 (4-1-14)
.
—arcsin s34 ;

Vig D@ +a0) + @d 1

() With € > 1

1 . 2(*— 1) e~ 4 ed}
Y= [arcsm Vi@ —1) @ + 8% + (a9}

. . sAd
—arcsin 4-1-15)
e N k= (

C— T
~}-arcsin V ¥ e ! —arcsin VinJ .

For subsonic velocities

(a) With € < 1

llF"'__-[ Vit V¢2—(¢—l)- ]‘; (4-1-16)

(b) Withe >1

A}

From (4-1-14), (4-1-16) and (4-1-17) it follows that the magnitude of € most mark- /58
edly affects the relative change in the coefficient of friction at subsonic velocities. The
degree of this effect can be seen from Table 4. 2.

TABLE 4.2. Value of (Cf/cfo)Re** at subsonic

velocities from the limit formulas (4-1-16) and

(4-1-17)
v

i * o | os | 1 2 s | | 8
0 0 4 2 1 0,5 |0,33]0,25] 0,25
0,25 | 0,71 2,65 2,35 1 0,62 | 0,45 0,35 | 0,29
0,5 - 0,9 1.88 1,45 1 0.65(0,5 | 0,41} 0,35
0.8 0,97 1,81 1,41 1 0,67 | 0,521 0,43 | 0,37
1 1 1,78 1,38 1 0.69 | 0,540,451 0,38
2 1,1 1,69 1,33 1 0,71 10,58]0,47 ] 0,43
5 1,26 1,59 1,29 1 0,75 0,63 | 0,54 | 0,49
10 1,39 1,54 1,26 1 0.77 ] 0,65 | 0,58 { 0,54
P o |1 1 1 |1 1 1 1

€ is found from (2-3-10), withn = 1/7. It is interesting to note that the effect of
the non-similarity in the velocity and temperature fields on the magnitude of §, with
gas heating and cooling, is not large and is opposite in sense.
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4. 2. Velocity Distribution in the Non-isothermal Boundary Layer at a Plate with

High Re numbers
For our conditions, Eq. (3-6-7) yields

2@ —No+ap _

S N w =1t oF
=VF=1yT, (1-—- "°1ne.)
84
CS
Farssin

With Ap = 0

aresa (f/ T

°)=
_Vq,_:}qr /1_']/6:- )

or
©= V‘b,—v—sin {V';f*— VT

(1= LV )}

For the subsonic gas flow region
o=} Wm"’o ["’o 1—2—‘/?'{"/;}
Assuming w,=1 +% c—;—lnﬁo,, we find
.=/?_ [l + _l_‘/c_".lnE.] [—l _'2‘/?
\l-l- 1 '/t‘f. InE,)-i-V!{_a.]’

For the limiting cases, we have

(a) With ¢ — 0
.=o:=(]+7l._ %In&,)’;

(b) With § ~ oo

.=m.(2—wo)=[1—(;. "'l E.) J

With ¢ = 1, naturally, w = W,

(4-2-1)

(4-2-2)

(4-2-3)

(4-2-4)

(4-2-5)

(4-2-6)

(4-2-7)
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rolore ) &b
g F"r,.o — T a5 "
/7 H
/42’ 3 i {Ad ]
/ /3 a3 °
5
/ 02 14
a1 4
& (.f /4 - ¢' 7 — . ’. 7
25 7} 7254567890 P54 5467890
FIG. 4.4. Effect of FIG. 4.5. Effect of gas FIG. 4.6. Effect of
non-isothermicity on compressibility on the compressibility on
the limiting velocity integral characteristics the shape param-
profile (M <« 1). of the turbulent bound- eters Hand H'. 1—
1 —w = my(2—0p) =t(2—t'/7) ary layer. s—aem: 2—1%, o H; 2—H".
(¢=w0): 92— g =t"T(p =12 kR L

3—(.):.3 = ‘217 (d= 0).

Figure 4. 4 shows comparative results for calculations made with (4-2-6) and
(4-2-7), with w_ = 17,

file becomes less full with an increase in the intensity of cooling of the wall.

As can be seen from the diagram, the limiting velocity pro-

Tn consideration of (4-2-1), (4-2-3) and (4-2-4), we find the limiting expressions
for the displacement—and momentum-loss—thicknesses and the shape parameter H.

Figures 4.5 and 4.6 illustrate the calculations of 8*/8, 8**/¢, 8*,/6, Hand H',
using (4-2-3), for the case Ay=0.

E p—

Here 8%,/3= Gj (1 — w)p) d& and H' =3%,/8*".

As can be seen from the graphs, gas compressibility has a considerable influence
on the integral characteristics of the boundary layer and shape parameter H. On the
other hand, the influence of compressibility on the shape parameter H = 8*A/8** is
inconsequential.

To an adequate approximation, the computed results can be represented by the
following formulas

(a) Fory*=I

H=vyH,, (4-2-8)

(b) For 10>¢*>1, Ay=0

H=Hy(1,67¢9*—0,67), (4-2-9)
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(c) For 10>¢*>1, Ay#%0
H=v%H,(1,679*—0,67), {4-2-10)
—_ *
where § = TW/TW.

4. 3. Limiting Law of Heat Transfer for a Non-isothermal Boundary Layer on a
Flat Plate

For the similarity region of the distributions of enthalpy and concentration over
the boundary layer cross section, and for the diffusion of gases of like valency, taking
into account (2-2-1), (2-3-1), (2-3-4), (2-5-4), (2-5-5), (3-4-3) and (3-5-3), we have

(a) With 8<dr(6p) (i.e. e<I)

°—1
i o e
¥ = =)/ —__|arcsin
S Do V\V—l i T —1 .
L V4 i (0" 4 A4+ (A
. ad |
-- arcsin- Fp (4-3-1)
l/4 o 89 + (@

+a [V1+A<P(l—s)—Vl+Aa'»l}:
(b) With 8>&T(ED) (i.e. >0

¥—1
27— + 8¢

Soo b =F 1 ,—arcsin V =
4

i
T (4 + A4 + (A
—arcsin - 44 ]’. (4-3-2)

—
Veite +an e e
For the case s =1

2(4° — )+ A
VIFE =D + 3+ @

— aresi 4% ' (4-3-3)
A e =D G £ 20 T OO ]

3 .
=F=7 [arcsm

As Spalding [164] has shown, Egs. (4-3-1) and (4-3-2) can be approximated to
within a few percent by the following simple formula:

Vo= Tp= [ 0+ 1)+ —ne| " (4-3-4)
- L 1
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Assuming r = 0.9 and k = 1.4, we have

M

T =T < [+ {4"% -1y* 40,03 (

)’j". (4-3-5)

The gas flow velocity for the subsonic region is

v =v,— [VT_%T] (4-3-6)

The limiting temperature and concentration-distributions of the gas diffusing over
the boundary layer cross section are found from Egs. (3-6-9) and (3-6-10), with the
condition

glgo=jlje=1.

In particular, for the subsonic region and diffusion of gases of like valency, with
the main flow from Egs. (3-6-8) and (3-6-9), we find

oy [ s J[=1

(4-3-17)
+1 VS lnE,)-i’-l/T?—J
and
F=V T [ gy s ][ (
(4-3-8)

+-;TV§;'L1MD)+V\§T].

The limiting laws of heat- and mass transfer for more complicated conditions of
diffusion and injection of an inhomogeneous gas, with chemical reactions at the sur-
face, will be derived in Chapter 5.

4.4. Limiting Law of Friction for a Non-isothermal Boundary Layer of a /63
Dissociating Gas on a Flat Plate

Gas dissociation processes in the boundary layer are possible in the high-
temperature region.

We shall assume that the dissociating gas is a binary mixture of atoms and mole-

cules. Using the familiar approximation of the ideal dissociating gas, we introduce
the mass concentration of atoms as a given point, « = pa/ p, and then the mass con-

centration of molecules will be pM/p =1 - «. In this case

Iy = Toyie = CpyT+ (Cpy — Cpy) 3T +3i; - (4-4-1)
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Introducing the specific heat of the mixture Cp =z Cicpi’ we find
Ly =CpT 41, (4-4-2)

where iz is the heat of dissociation.

From the equation of conservation of atomic components (2-1-13), we find
da Oa a 0 .
e+ gy =gy (5 o) o | + e (4-4-3)

where v, is the mass rate of formation of an atomic component.

For the "ideal dissociating gas'' we can assume [73]:
. d—a
w = "'M2K, (I + ) ——a (4-4-4)

where Moz is the atomic weight of the gas; o, is the equilibrium degree of dissociation;

Kr is the dissociation rate constant.

Converting (4-4-3) to dimensionless form, we have

- du_'_—’F e 1 _0_|'(P-+.)Bu]
P¥s 52 v g7 Re, oy 2 Sc' *] 07 (4-4-5)
Ie—ﬂ
=D (o)

Ly3K- .
where Re,=pw,L/n,; Da= —:?—Ka,—. is the Damkohler number characterizing the ratio of the
()

time of existence of particles in the flow (diffusion time) to the chemical reaction
time.

When Da — 0 the effect of gas phase chemical reactions on the flow in the boundary
layer is slight. In this case W, = 0, the mixture of gases in the boundary layer can be

considered to be chemically inert; such a boundary layer is called "frozen-in. "

If Da - o the chemical reaction time turns out to be much less than the time
particles remain in the boundary layer, and local thermo-chemical equilibrium will
be established at each point.

The distributions of the concentration of each component will depend only on the
local thermodynamic parameters T and P. This boundary layer is termed "equilib-
rium." In this case the diffusion equations are not needed to solve the problem.

If the rate of the chemical process and the transfer processes are of the same

order, the conservation equations of the components must be used in their general
forms.
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Let us consider the "frozen-in" turbulent boundary layer with a catalytic wall.
Then, for Sc = 1, we have from Egs. (1-1-4) and (4-4-3)
o=0w + (Qp—Cw) ©. (4-4-6)

If we assume that only translatory degrees of freedom are perturbed in atoms, and
both translatory and rotational degrees of freedom in molecules, we have

(4-4-7)

Taking (4-4-1), (4-4-7) and the equation of state of an ideal gas into account, we
obtain

ig= 3.5+ 1.50) E:_.””“ 2m—‘l--; (4-4-8)
P=P.=p;k:-(l+q) T. (4-4-9)

Hence
2Tt (4-4-10)

Po T 14a°

In view of (4-4-6), (4-4-8) and the similarity of the total enthalpies and velocities
in the boundary layer, we find

T, 7T+3 743 T+ 3a

1,4M2
+o(l —w T¥ 3’

( )

Substituting (4-4-6), (4-4-10) and (4-4-11) into (3-3-6), we obtain the limiting
relative law of friction for the "frozen-in' turbulent boundary layer of a dissociated
gas:

l .
7 4 3oy 7430, 7+3ay
'.a‘(J[{ 7+ 3 H‘(7-+-3o: 7+ 3 *’)"’

. 4-4-12
|.4Mg —'l'—l— a.'lll'z ? ( )
+o(l —w T+ % T—i:] dw] -
For the hypothetical case of an isothermal flow of a dissociated gas at subsonic /65
speeds, we have
2 ? :
"’..,-( eney ) (4-4-13)
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where

The results of the numerical integration of (4-4-12) are satisfactorily approxi-
mated with the formula

¥oo = ¥ioo¥poc¥ucos (4-4-14)

where

. (arcth.Vrk—z—l)
wMQ= ] °
k— 1
M, ‘/r 3
Figure 4.7 gives a comparison between (4-4-13) and calculations made using the

method of U. Kh. Dorrance [131]. The calculations covered the ranges of change of
Rex of 10%5-108, Mo-number from 0-4 and TW/T\; from 0.04-1.0. The relationship

between (c f/ c fo)Rex and (cf/ c fo)Re** is found from the momentum equation and, for
the conditions being considered, is
1

m+t
(e ”‘.':o ‘n:(%)ne- : (4-4-15)

As can be seen from the graph, the relative law of friction in the form
(cf/ o depends weakly on the temperature factor and M-number.

The maximum effect of gas dissociation on the limiting laws lies within +25% . For
the case PrT = Pr = 1 the known analogue y, = g €20 be used.

o = )Re**’ M,l/)

It should not be overlooked that in this case in the determination of the total heat
flux to the surface of the plate the coefficient of heat-transfer should be multiplied
by the drops in total enthalpy.

On substituting Eqs. (4-4-6), (4-4-10) and (4-4-11) into Egs. (3-6-8) and (3-6-9),

we obtain the limiting distributions of velocity, enthalpy and concentration over the
Cross section of a turbulent boundary layer of dissociated gas.
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In particular, for the subsonic region

Al Py ‘I L~
foo / of gas flow, under isothermal conditions,
L A " we have
A /8 —f—
/e .e 8 11—V,
A g |( o=V¥ oo, —5——+Vi |- (4-4-16)
” al |
For the limiting cases:
as ' W (a) @ = 0, @ = 1.0 (complete
% dissociation in the stream and complete
ca recombination at the wall):
/ ”aa
© T+*ay,
= 0+0, . -4-17
q;” R TR BT ST T R o= (0,170, +0,83) wy; (4-4-17)

FIG. 4.7. Influence of gas dissociation
on the relative law of friction in the tur-

bulent boundary layer.

the Dorrance method [131].

@=we(1,17—0.17ws).

(b) o= 1.0, o= 0 (complete

dissociation at the wall and complete re-
Curve—computed combination in the flow):
from (4-4-13); Points —computed using

(4-4-18)

Comparison of (4-4-17) and (4-4-18) shows that the influence of gas dissociation on
the limiting velocity profile is negligible (Fig. 4.8).
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FIG. 4.8. Effect of gas
dissociation on the dis-
tribution of velocities
in the turbulent bound-
ary layer. l—wo; 2—

zpa = 0. 5; 3—zl)a = 2.
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CHAPTER 5
THE TURBULENT BOUNDARY LAYER ON A PERMEABLE SURFACE

5.1. Limiting Laws of Friction, Heat- and Mass Transfer on a Permeable Plate

The problem of calculating the turbulent boundary layer on a permeable surface
is extremely important. Processes of this type arise in connection with the protec-
tion of machine elements from the action of high-temperature gas flows (the so-called
"'pore'* cooling of gas-turbine blades, rocket engine combustion chambers, ete.)
during evaporation and condensation, in the presence of chemical reactions at the
surface of heat-exchangers (burn-out of heat-resistant coating), and in the freezing
of liquids and the fusion of solid bodies.

A diagram of the turbulent bound-
‘r s ary layer on a permeable plate is
i shown in Fig. 5.1. We shall consider
that the surface of the plate is penetra-

&% ARG — | - ble at all points for one component of
I EE SRR EEEEEEREEREE the flow. If gas is injected into the
Por ™y boundary layer, or sucked out from it,
the openings are assumed to be small
FIG. 5.1. Diagram of boundary layer on a in size but in adequate number.

permeable plate.

The distribution of shearing stress /68

over the boundary layer cross section,
for the conditions being considered, follows from Eq. (1-6-15) as

T=r (1 + l—"}z?) (5-1-1)

For the condition Re — o, the wall region, where £ « 1, becomes most important
for 7. Consequently

T=7y (1 + b0). (5-1-2)
A comparison between the test data [140, 168] and the values computed with for-
mula (5-1-2) is shown in Fig. 5.2. As can be seen from the diagram, the test data and

formula (5-1-2) agree both qualitatively and quantitatively.

The relative limiting law of friction for a flow around a permeable plate is
written as

~
(o1
©

l"'1/2
¥ = ?_L -1-
« ( }’l—}-b‘a)) (5-1-3)
or

o2 de

—_— = ]. 5-1-4
§ @b} ( )

()
s



-6 The relative density p is
v always finite, and the relative
velocity w varies from 0 to 1,
2 /q and hence there exists some
AR \ B value of the permeability
/ ° parameter b with which the
*L e . \ integral (5-1-4) has the value
s P ¢, =0. This value of the
e permeability parameter will
° ®
. be termed "critical" and
4 // - = AN symbolized as b_ .- This
_,4 20, \eﬁx phenomenon can be identified
3= oo S\'ed with displacement of the
g 42 2% % B @ 1 boundary layer from the per-

meable surface.
FIG. 5.2. Effect of gas injection on the

distribution of turbulent shearing stress The magnitude of the
over the boundary layer cross section. critical permeability param-
Curves computed from formula (5-1-2): eter is found from Eq.

(5-1-4), setting ¥ =

Source (140} | { 168}

Symbol 9159 - IO l ° l [ b . =[S(};)”2de'.

5, 10 20 2.8 3.28 crite \

(5-1-5)

From Eq. (3-6-6) we find the limiting velocity distribution over the turbulent
boundary layer cross section

S m"“ — =)/ T_ (1 — o). (5-1-6)

-
In case of critical injection

112 .
S St de=]/b_—(1—a,). (5-1-17)

The properties of the gas injected through the wall are in general different from
those of the gas in the main flow, and therefore we shall distinguish between injection
of a homogeneous gas (M; = M,) and an inhomogeneous gas My # M,).

5.2. Injection of a Homogeneous Gas under Isothermal Conditions

For the simplest case of injection of a homogeneous gas under isothermal condi-
tions (¢ =1) and from Egs. (5-1-3), (5-1-5), (5-1-6) and (5-1-7), we have

¥ = (1 — %)’ (5-2-1)
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b, =40; (5-2-2)

b b
.=(1 — T)mo-}- - ol (5-2-3)
® . =o (5-2-4)
crit [
where w rit is the dimensionless velocity in the displacement section of the boundary

layer.

In view of Egs. (1-9-4) and (1-9-5).

(1 o me) (5-2-5)

Table 5.1 gives values of the shape parameter H = 6*/6** computed from (5-2-5)
for various values of Re**

. ,
(H = S(l - crit) dE/ S“’ :,rit:(l - mcrit) dt )
1] 0

TABLE 5.1. Values of the shape parameter H at the
point of displacement

Ree*
H
2000 | 1000 | 100003 | 100000) | oo
Hwithb=b, . .. .| 1,53 | 1,44 | 14 1,33 1.0
Hwithb=0. . . ., 1,28 1,23 1,18 L5 1
H=HH, ..... 1.19 L7 ] a8 1,15 1
i : 5
In the case of gas suction through the porous plate, we have
b\?
v = (1 +) (5-2-6)
and
b b 2
= +T>‘°'— 2 (5-2-T7)

For the limiting suction of gas (see Section 8.1), b =4, and
0 =9 (2—w).
Figure 5. 3 shows the effect of gas injection and suction on the limiting profiles of
velocity and temperature. For the conditions in question, w = . As can be seen

from the diagram, the velocity profile becomes less full with gas injection into the
boundary layer, and, with suction of gas, it becomes fuller.
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T 10— i —9-3) i
wr, T2 ’W 3 ‘; T Taking Eq (5 2-3) into
S oS s X = account, the limiting formulas
a8 §/§ J@/’ T 4 g P for the displacement thick-
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a4 04 n
| w, = £, then
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FIG. 5.3. Effect of injection and suction of gas on (5-2-8)
the limiting profiles of velocity and temperature.
1, 2, 3, —calculated from formula (5-2-3) and (5-2-7), s __ 21 (5-2-9)
respectively, for b =-0.43; b =0.53, b = 3. 07. wcrit™ 2m41°
4, 5—calculated from formulas (5-2-3) and (5-2-7)
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FIG. 5.4. Comparison

between formula (5-2-3).
and the experimental
data. Curves—computed
from (5-2-3).
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a“

n(2n+l+—:—)
H =-—3F2=

® .- b b b 2
), (l_T/(2n+|)+[T—<l—T) (n+1) (5-2-12)

—

, B b\er D@ F)_ CERIVZED
-T("4) A1 6 n+1

H =1+4n. (5-2-13)

escrit
Figure 5. 4 gives a comparison between formula (5-2-3) and the experimental data /73
of various investigators. As can be seen from the curves, the limiting velocity dis-
tributions are in good agreement with the test data.
5. 3. Injection of 2 Homogeneous Gas under Non-isothermal Conditions
The limiting relative laws of friction for the case of injection of a homogeneous gas

into a subsonic flow of gas under non-isothermal conditions are found after substituting
the expression for the density

E=¢+l—9o (5-3-1)

into (5-1-3). After integrating, we have

(a) withy <1

_ 4 V=9 a+ey+Vs 1"
Yo=1=w5 [“‘ Vi—v+Vos ] - (5-3-2)
() withyp >1
4 'bl 51; .. _9_
¥ =g=n5| ¥ ‘/m—arcfg‘/;—_—l] (5-3-3)

As shown by Spalding [164], Egs. (5-3-2) and (5-3-3) are satisfactorily approxi-
mated by the following simple formula:

Y= [T W +a+0)" P + b 6-n] (5-3-4)

For the critical injection parameters, we obtain from Eq. (5-1-5), taking (5-3-1) /74
into account:

(a) with y < 1

1 14+VT—=7 \%.
bcritco=| 3 (ln Vi ) ’ (5-3-5)

®) withp > 1
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[}



b . =:—l——(arceosQ———i')’ {5-3-6)

In analogy with Eq. (5-3-4), Egs. (5-3-5) and (5-3-6) are conveniently approxi-
mated with the formula

4

e T R (5-3-7)

b 1
3t

criteo

Figure 5. 5 illustrates the relationship between the critical injection parameter and
the temperature factor.

The equation

R
v &Cl’lt-

\ b L
i S
‘4 is an adequate approximation of Eqs. (5-3-2) and
2 9 2

' 5-3-3); where ¥ =(—=-——) , andb . is found
I} a5 10 15 20 25 10 35 'ﬁ‘ﬂ ( ) where too V-¢ +1 crit e

from (5-3-5) and (5-3-6).

FIG. 5.5. Influence of
non-isothermicity on the Figure 5.6 shows the comparative results of calcu-
critical injection param- lations using (5-3-2), (5-3-3) and (5-3-8).
eter. Solid line—com-
puted from (5-3-5) and From an analysis of formula (5-3-8) we come to the
(5-3-6); Broken line— interesting conclusion that gas injection is less effective
computed from (5-3-7). than an increase in wall temperature, with other condi-

tions being the same.

The limiting velocity distribution over the cross section of a non-isothermal tur-
bulent boundary layer is found by substituting expression (5-3-1) into Eqs. (5-1-6) and /75
(5-1-7). For p < 1

K?* —ac
O=TeK ) (5-3-9)
where
a=(1—¢b d=(1—-$F_+ ¢
cquwa;
! Va(sy—t) ! d:
K=[Va@+d+q +a+7 d|e ——
Forp > 1

arctg “fﬁ:f'_";,ﬁ“” =arctg Vi —1 (1 +0b)

(5-3-10)
SATIE A APt
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w In case of critical in-
jection:
¥ % For ¢y < 1:
Feoo|
d /
3 Vi+(I—o+V{T—§o
Yi— —
@ i =[14yT—9] e 2V Crita!™"" ,
)
b ™2 (5-3-11)
y. -
Pe-dClit o) F . 76
O T R R T TR VA R TR ory>1 /18
. t—Ne _ Ty
FIG. 5.6. Comparison of formulas arctg V R =arctg V1
(5-3-2), (5-3-3) and (5-3-8). Curve—
calculated from (5-3-8). V¢—I
( ) Vbcntoo (l )
Cale, from equation (53-2) ‘ {533) tTaErilng (f’ 3= 91) iﬁto ac-
Svmbol coun e integral charac-
e O & 106 |8 |a teristics 6™ and 6**, and the
N 02 | o4 |06 |08 | 2 4 )
shape parameter H, can be
computed.
Figure 5.7 shows the computed shape parameter H
2 5‘ - . and a comparison with the test data of various investiga-
’ : tors. For the region ¢y <1, the calculation is satisfac-

torily approximated by the following formula

b
P J 4 5 6
FIG. 5.7. Dependence of

shape parameter H on where H =1+ 2n.
non-isothermicity and °
injection. Straight line—
computed from (5-3-12);

—

H=Hup(1+0,05b), (5-3-12)

5.4. Injection of a Homogeneous Gas into a Supersonic

Points— % plate (¢ = 1) Flow
[81]; o, x—initial section . . )
of tube (@ = 0.5, 0.4) For the region of supersonic gas flow:

[69].
=¢— Ao —(¢* — 1) o’ (5-4-1)

The limiting law of friction for the supersonic boundary layer is found by substi-
tuting this formula into Eqs. (5-1-4) and (5-1-5):

!
do

¥ = .

® (,{V(l+b.m ¥ —84o— (3" — 1) w?) ) (5-4-2)

and for the critical injection parameter
1 ]
do

bcritﬂ’ = [5‘/71‘#_ Slo— (° — 1) 7] J (5-4-3)
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Elliptic integrals are the result, and the final expressions for ¥~ and bcr

the forms:

Ve == e F e A —F el

and

Voo = —— 2 F @, n).

it =Y T Vied £ |

where F is an incomplete elliptic integral of the first kind:

[ Tel

Tel=1,
'/ lu:l+31—

'//1~,|+—;—

.—'——l—'

oy |+ 35— S——
—_ - Y H I“’:|+l‘°l|;
"—‘/1»,1+,...|. P=aresin Y i F e

_]/ Y
~= THAEILE

p.[p: 0.
and w,; and w, are the roots of Eq. (5-4-1) with po_/p = 0.

9, = arcsin i ¢, =arcsin

it take

(5-4-4)

(5-4-5)

The results of the numerical mtegra‘aon of (5-4-2), carried out by I. K. Ermolaev
over a wide range of variation in % and ¥*, are given in the Appendix. For the injection
of helium into air the relationship between density and velocity is taken from (5-5-11).

As shown by N, I. Yarygin, Eq. (5-4-2) is approximated to within £15% by the

following formula

L 2 =97, (1 ; )'.
crit

where

—1 '
2 * arcth’/ r£—2—
't= Tw ’ WM= T .
MVr 3

The critical injection parameter is defined by the expression

b b ¥

criteo — crity M°
where bcritzp is determined from formulas (5-3-5) and (5-3-6), with
F="/y"
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X
Yo by
b
Crit. calc.
J
{,‘
2
a5 ?.
1
%
J besit, approx.
% g 1 P 3 4
LY b FIG. 5.9. Compari-
7 | oay OcTit son of calculations of
as b7/ the critical injec-
tion parameter from
FIG. 5.8. Influence of compressi- (5-4-5) (ordinate) and
bility and non-isothermicity on the (5-4-T7) (abscissa) in
relative law of friction. Curve— the M-number range
computed from (5-4-6); Points— 0-12 and with Ay
computed from (5-4-4) and (5-4-5) from 0 to 30.

in the M-number range from 0-12
and with Ay from 0-30.

Figures 5.8 and 5.9 compare the results as computed from Egs. (5-4-4) and
(5-4-5) and from the approximation formulas (5-4-6) and (5-4-7).

Substituating (5-4-1) into Eq. (5-1-6), we obtain the limiting velocity profile for a
supersonic gas flow over a permeable plate:

]
de
- p— w l—b , _4—
SV (1 + 0,0) [$—2¢— (}* — |) @3] cn( w,) (5 8)

and for the section with critical injection

1
de _ ———
SV@N—AW—H—‘— ) o] =V Ferigo(l — o). (5-4-9)

For an adiabatic plate (Ay = 0) we have

Vs +VE — -t =1 +V‘P—*] er—b—’— Kerito!l—= . (5-4-10)

5. 5. Injection of a Foreign Gas

With the injection of a foreign gas through a permeable plate, under the conditions
being considered (Le = Pr = 1; dP/dx = 0, iw = const, ﬁw = const), similarity must

exist between the distributions of total enthalpy, velocity and weight concentration of
injected gas over the cross section of the boundary layer, i.e.
59
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Loiw P —dw (5-5-1)
iy — iy r2 _?w 4
where p' is the weight concentration of injected gas.
If the concentration of injected gas in the main flow is zero, then
i*— 7
P =1 —g = (5-5-2)
The gas constant for a binary mixture of gases is
-,%-=_P'(R—l)+l. (5-5-3)

where R = Ri/Rg; R, is the gas constant of the injected gas; R, the gas constant of the
main gas. For a binary mixture of ideal gases (since dP/dy = 0) we have:

~ o (5-5-4)
Hence, taking into account (5-5-2) and (5-5-3), we find
B={+7w ®R—na—u L. (5-5-5)

The mass balance of injected gas at the wall is written as

. a
fw=— Doy, %)w + 0wy (5-5-6)

In view of (5-5-2), (5-5-5) and (5-5-6), with Pr = Le = 1, we have

= b -5
Pw—l+b"- (557)
Hence
o T b .
bt [l + 35 ®@=10 —(n)]. (5-5-8)
Since in the absence of chemical reactions
T Cpol Cpo [ i
B (R e TY‘"(T:" —q,-).._(q,-_l)o-] (5-5-9)
and
Cp b, Cp <Bo

then, for the conditions stipulated, we have
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b,
1+ 35 € —D(1—w)

2o
b, -
P ‘l+m(}?—-l)(l-—m)

T Fpm @ — 0]+ -2

(1435 € =)o -6 —1) I

wherec=c¢ /c_ .
Pt Po

For gas mixtures of like valency, R = ¢, we have

or
L=t — = — G =D,

where y,* = po/pw.

Values of y; for some processes are compiled in Table 5. 2.

TABLE 5.2. Value of y

Boundary Layer Characteristics 'y
Homogeneous non-isothermal b=T,/T,
b, -
Non-homogeneous isothermal 14 iﬁ— R—1
1}
Non-homogeneous, mixture of i b ,
gases of like valency, non- Iw e S S
isothermal ’ ie vl T + b ® l)J

(5-5-11)

(5-5-12)

(5-5-13)

Thus all limiting formulas derived for the injection of a homogeneous gas under
non-isothermal conditions can also be extended to the injection of a foreign gas if we

substitute g, = po/pw for ¢ in the formulas.

Specifically, for the injection of a foreign gas under isothermal conditions, we
obtain from (5-3-5) and (5-3-6) a relationship between the critical injection parameter
and the ratio of the molecular weights of the injected gas and the main gas flow. With

critical injection § =R. Therefore for R< 1

_ 1 /ln|-+V1—R !
bcrita_l—n\ I—Vi—r /"'

(5-5-14)
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and for R > 1
b riteo = Tl—_l (arccos 2—;—5)’ (5-5-15)

The approximation formula is of the form

4
berite = —T—35— (5-5-16)
Tt3R
From Eqgs. (5-5-14) and (5-5-15) we see that the critical injection parameter in- /82

creases with the molecular weight of the injected gas.

_As Spalding [164] has shown, Egs. (5-4-2) and (5-4-3) may be approximated when
R = ¢ by the formulas:

Vo [+ {0 ()t 0 +oa Y
‘ (5-5-17)

1 b, |, 7 1 +Rb -
—(* — ] ____ﬂ ' — :
AW =0+ ) -
b — 4
critos — | D) . (5-5-18)
IYV+TR

5. 6. Limiting Law of Friction for the Non-isothermal Boundary Layer of a
Dissociated Gas on a Flat Permeable Plate

For the "frozen-in" boundary layer of a dissociated ideal gas, taking (4-4-10) and
(4-4-11) into account, we have

L-I+¢. 7 4 3ay 7+ 33y T4 3ay
g {7+3¢ “'+[7+3a T+ 3 *]“’
(5-6-1)
1,4M2)7°
+0(l—_w)m .

Substituting (5-6-1) into (5-1-3), and using (4-4-6), we obtain the limiting law of
friction for the conditions being considered:

1 l/ 4+ 3 (1 +ay) [¥, + (1—¥,) @]
- _S { Wt (I — ¢ @ }“"
o

(TF3a )¢+ [7+3— (7 +3,) Ve +e(l— (5-6-2)

T e LM (L he)

I~
[e ]
w

The critical injection parameter is found similarly from Eq. (5-1-5):
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-
1
~

"cmw=ﬁg‘/4+3“ T (b O =3 el e (5-6-3)

‘#“4—“——"{1)(0 wl,l

For the hypothetical case of the isothermal dissociation of a subsonic turbulent
boundary layer (y = 1), we have

o=y (L) 0l (5-6-4)

Consequently, for z[)a < 1:

T—¢ W2 (1462 4012 T
® - 4 0 ( ‘bg) l(+ ) T,zl . (5—6—5)
® 7 b (1—v,) (1 —4,)'" + (05,)"
1 l+(|—-¢¢)”2 2
beritm =T—4, '"‘__(1._%):/2 ’ (5-6-6)

and for z/)a > 1:

4 b, IE] biba 112) 2.
'F°=-———b‘ ) {arctg (——~——(¢a_l) o) ] — arctg g } , (5-6-T)

1 / 2—‘#5 : —C—
bcrin::'ﬁ'\arccos b ). (5-6-8)

In the Spalding approximation

1 -1
¥ = | W 0400 o =) (5-6-9)
5 ! (5-6-10)

crite = 173 + 2/33, °

It follows from Eq. (5-6-10) that gas dissociation may exert a marked effect on the
limiting critical injection parameter. In particular, with d)oz =0.5, b =6, and

with woz =2.0, bcrit'a» =2.4.

crit e

Formula (5-6-10) is conveniently expressed in the form
bcriton - 3 .
b..cﬁt“ l + 24"

ax)

(5-6-11)

where bcr is the critical injection parameter in the absence of dissociation.

it e
a=0
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Ira,

FIG. 5.10. Effect of gas
dissociation on the critical
injection parameter.
Curve—calculated from
(5-6-11); Points—calculated
from (5-6-3) in the M~-num-
ber range of 0-10; ¢ from

Calculations show that formula (5-6-11) is more
universal and may be extended to the flow of a com-
pressible gas under non-isothermal conditions if the

effect of these parameters onb__, is accounted
critoo

a=0
for in accordance with (5-4-7).

Figure 5. 10 presents a comparison of calculations
made with (5-6-11) and (5-6-3) in the M-number range
0-10, ¢ from 0.1-10. The limiting law of friction may
be approximated by the following simple formula over

rather broad ranges of M, ¥, Do Ay and o

b \?
.bcritco) '

Y-, (1 (5-6-12)

0.1-1.0, a, from 0 to 1, where
o from 0-1. 2 ' ( 2 )’.
w Py=—F—), P =(F7=]>
( ]/TT‘W. i ) Ve +1
. W /
- 1 ?
arctg M V r k _2- !
¥ = =1
r
S ) - A Figure 5.11 shows a comparison of the
A ! i calculations using (5-6-2) and (5-6-12). As
\ ‘ ; | ; can be seen from the diagrams, the results
78 | | _ — with the exact and approximate formulas
' l ‘[ ! i are in good agreement in the subsonic re-
; \ gion. Formula (5-6-2) generalizes the
";‘3 i i computed results in the supersonic region
46 S ! somewhat less satisfactorily.
‘ |
| \ : Taking (5-1-6), (5-1-7) and (5-6-1)
as L ,l into account we can derive the limiting
oo Ras velocity distributions over the cross
Noa? section of a dissociated turbulent boundary
AR N layer of gas on a permeable plate.
e N
I
SR s b5 |
1 . *® i dcrit -
" 7 6 3 7 7, M 0 l 2 s ‘ 10
9=0.1 @) o @ )
FIG. 5.11. Effect of non-isothermicity, =02 Al A v v

compressibility and dissociation on the
relative law of friction on a permeable

plate:

Curve—calculated from (5-6-12);

Points—calculated from (5-6-2).
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5.7. Limiting Laws of Heat- and Mass Transfer for the Turbulent Boundary
Layer on a Permeable Plate

The limiting relative laws of heat- and mass-transfer, in the general case as
shown in Chapter 4, are in the form

pq b0 OB 172 *
[5 T ,,E,-) dEr] ; (5-7-1)
! 12 : /86
p/, do d@ \I dt _—
p—td - " 5_7_2
Vo L" 110 %0 %p P ( )
where
7 '
E:)Re - wz ! +St-l JquET + blrs; (5_7—3)
» ' ED
I — ~ -t -7 -
(B =105 455§ty et

If there are no chemical reactions or sources of heat or matter in the boundary
layer, formula (5-5-11) remains valid for the gas density. Then the limiting laws of
heat- and mass transfer, and the limiting distributions of total enthalpy and concentra-
tion will be given by Egs. (5-4-2), (5-4-3), (5-4-8) and (5-4-9) except that & and ¢
will appear in place of w.

In more complicated cases, with chemical reactions inside the boundary layer, it
is convenient to introduce the weight concentration c of the individual chemical ele-
ments.

Then, with similarity of boundary conditions, and with Pr = PrT =Le = LeT =1,

the similarity of the distributions of velocity, total enthalpy and generalized concen-
tration is maintained.

i -— ~ Cq —
#‘l‘__: =C;= L__al‘l. (5-T7-5)
fog— & 10— &

20~ fry w

However, in this case difficulty arises in deriving the gas density formula.
Strictly speaking, to estimate the concentrations of all gas components at a given point
we must resort to the equations of chemical kinetics, which markedly complicates the
calculations. In some cases, estimates for two limiting cases are useful: equilibrium
and "'frozen-in'" boundary layers. The case of the "frozen in' boundary layer of a dis-
sociated gas has already been considered in Section 5.6, and the formulas derived
in this section can be extended to the boundary layer with chemical reactions at a cata- /87
lytic wall. In practice, the conditions when the chemical reaction rate in the boundary
layer is infinitely large compared with the rate of diffusion of the components is also

o))
(3]



pertinent. The reaction zone can then be considered to be some surface (the flame
front) at which chemical reactions also occur.

We shall assume that the injected gas reacts with the oxygen that diffuses to the
heat transfer surface, in which case a stoichiometric relationship is established at
some section (flame front) that determines the weight concentration of injected gas:

1
°»= l—'+"—l(-. (5_7'6)

¢
where K is the amount of oxidizer per unit mass of fuel.

The boundary layer will be divided into two sections by the flame front—the fol-
lowing conditions are satisfied for these regions:

=0,
el {ea=1—(14K)G, (5=7-7)
cor=(14K)¢;

c,=(1 + lT)E — —Kl-.
€ >¢ {¢,=0, (5-7-8)
e = (14 % )1 -2,

where Ec is the stoichiometric concentration of injected gas; cpr is the weight concen-

tration of combustion products; ET is the weight concentration of injected gas; c, the

weight concentration of the main gas.

The corresponding formulas for the molecular weights of the mixture have the
following form:

For ¢ < Cpr.c
1 1—(1 € g
e L s =L (5-7-9)
Forc > ¢
pr.c
1\, 1 1
! (‘ +7<‘)°— x, (1 +'T<‘)(‘—") (5-7-10)
W= My + Hpr :
In determining the enthalpy of the gas mixture it is convenient to assume that the /88
enthalpy of the main gas-and reaction products is zero at absolute zero; the enthalpy
of the injected gas is assumed to be positive and equal to iTo' Then
1= @Cp+ TprCrpp +,Cp ) T - C1 i, (5-7-11)
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forc<c
Thus, fo pr.c

I={1— (1 +KEC,,+U+K)EC, T (5-7-12)

and for ¢ > Cpr.c

(440 et )
—x[Ca T+ [+ %)= % | ine

Substituting (5-7-9), (5-7-10), (5-7-12) and (5-7-13) into Eq. (5-5-4) we have:

(5-7-13)

for ¢ < ¢
pr.c

oMt
=l —0+R0E+55

x{1—0+Ka+ 22 a+07 1
PO .

(5-7-14)

and for c >c¢

T

2 \q_aMe
_'-_-_-_{_’;‘-7 [(1+L)5—L} (1+ K)“ ')Mp,}
\ +[ C_T]Cgr }" (5-7-15)
PO

i)

Making use of Eqs. (5-7-5) and (5-7-7), we get the w-dependence of p. On sub-
stituting this relationship into Egs. (5-1-3), (5-7-1) and (5-7-2), we find the limiting
laws of friction, heat- and mass transfer for the turbulent boundary layer with chemi-
cal reactions. Spalding [226] has evaluated these integrals numerically for the case of
injection of hydrogen and air.
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CHAPTER 6
INFLUENCE OF A LONGITUDINAL PRESSURE GRADIENT ON THE
LIMITING LAWS OF FRICTION, HEAT- AND MASS TRANSFER

6.1. Limiting Separation Parameters of an Isothermal Boundary Layer on an
Impermeable Surface

In the case of flow over a curved surface, the flow velocity at the outer edge of
the boundary layer varies along the contour, and consequently dP/dx # 0.

A convergent flow, when dP/dx < 0 differs from a diffusor flow, when dP/dx > 0.

In Section 1.7 the conditions for separation of a turbulent boundary layer from a
surface with diffusor flow were considered and the effect of a longitudinal pressure
gradient on the stability of the viscous sublayer was analyzed. Let us derive the
limiting formulas for the separation parameters. We can write the following condi-

tions for the separation section of a two-dimensional, isothermal, turbulent boundary
layer of incompressible fluid at an impermeable wall:

¢y=0, p=po, p=0. (6-1-1)

Substituting these values into the Prandtl formula (1-5-4) and integrating over the
cross section, we obtain

) ___
o=o,cu + f (T)cmlf dOa. (6-1-2)

Yerit

The distribution of shearing stress over the boundary layer is defined by Eq.
(1-6-14), which can be written as

T=9, ) + Ay, ®. (6-1-3)

where

P®=1—-3+22 o ®=(1—8".
Taking (6-1-1) into account, we find

Serje_ 8 dP =(- AT 6-1-4
where f‘=g%:—° is the shape parameter, which is independent of ¢ £
[}
We substitute Torit into (6-1-2) and find
3 \1/2 3 fe—rer

— — —_ “Ep, (€) t. -1-

e=a,cae +(— 3 )cﬂtf (7)., V&® (6-1-5)

Yerit
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Assuming w =1 and £ = 1, we find the critical value of the shape parameter from
(6-1-5):

—fd) = i~ werit :

T8 crit Yo (6-1-6)

f (T)cﬁtfﬁv. (€) d8
] Y crit
With Re — 00, £ — 0, w; — 0
- 1 -2
] 3 —

a1 = - ®di ] -1-

( I3 )crit [5(‘ crit‘/E(? ® :] (6-1-7)

(6-1-8)

Assuming that the distribution of mixing path length over the boundary layer cross
section does not depend on the longitudinal pressure gradient and is defined by (1-10-1),
we have from Eq. (6-1-8)

o MEVIETEL € +1)
T InQVE +5)

(6-1-9)

This same equation is obtained from (3-6-1), taking (6-1-4) into account. Accord-
ingly

(—-i;f~.) =2 [XL In@2V6 + 5)]" (6-1-10)

crl

With the assumptions adopted, it follows from (6-1-9) and (6~1-10) that the limiting
velocity profile in the separation section of the boundary layer does not depend on
empirical turbulence constants. But the limiting critical value of the shape parameter
f depends on the constant X, With X, = 0.4, we have, for the conditions being con-

sidered (TW = const, j; =0, Re — oo):

’ 3 /8
k_;p)zo,oe‘z; \7) =03
i ] crit (6-1-11)
8.. -
(T) . =0,16; lt'.ritzl'BT; Ierit=—0,01.
crit

The velocity profile (6-1-9) is quite well approximated by the power-law rela-
tionship

0=308 (6-1-12)
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FIG. 6.1. Compari-
son of the limiting
velocity profile at the
separation point with
experimental data: 1—
calculated from
(5-1-9); 2—calculated
from the formula

w= £1/7;O—Niku—
radze's tests [188];
® —tests of A. 1.
Leont'ev, A. N.
Oblivin and P. N.
Romanenko [66].

From (6-1-11) it follows that the shape parameter f
also maintains a finite critical value with Re-numbers
approaching infinity, while the critical value of the Bury-
Loitsyanskiy shape parameter (I" = 2f/ cfo) tends to infinity
as Re — oo,

Figure 6.1 gives a comparison of the limiting sepa-
rated velocity profile [Eq. (6-1-9)] with the tests of N.
Nikuradze [188] and A. I. Leont'ev, A. N. Oblivin, P. N.
Romanenko [66]. As can be seen from the diagram, the
limiting velocity distribution and the test data are in
satisfactory agreement for finite Re-numbers. A com-
parison of the critical limiting values of the shape param-
eter H with the test data is of interest. According to
I. Nikuradze's tests, Hcrit= 1.8; according to E. Grusch-
witz. Hcrit =1.9; in the paper by D. Khurai, Hcrit =1.9.
These data all correlate quite satisfactorily with the
theoretical limiting values. However, tests exist {202,
66} in which the measured values of the shape parameter

H ., reach 2-2.6.
crit

This deviation from the theoretical value may possibly
relate to surface roughness or other factors not allowed
for in the assumptions adopted for the functions 1(y) and
T(y).

In analogy with Section 1.7, we estimate the parameters of the viscous sublayer in
the separation section of the turbulent boundary layer.

The velocity distribution in the viscous sublayer in the separation section of the
boundary layer is defined by formula (1-7-3):

0= — 3 ferit (,i/‘ ‘Re*t’. (6-1-13)

We shall assume that (6-1-9) also describes the velocity profile in the turbulent

portion of the boundary layer with finite Re-numbers.
some basis for this assumption.

Figure 6.1 serves to provide
It is clear that the assumption is more nearly

correct as Re becomes larger.

In case the velocity profiles computed from (6-1-9) and (6-1-13) intersect, £ ..
and wy crit are, to a first approximation

From this
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Ccrit ™ Revvem s
-
®,crit = Revv e ¢
Re,crit == ©,crit %, crit (gg-s) Re** ~ 28. (6-1-15)
crit




0w,
As was demonstrated in Section 1.3, the number Re,= (yy_dy__)”-y may be taken as

a measure of the thickness of the viscous region near the wall. With dP/dx = 0, the
magnitude of Re; is Re; = n° = 134.
10

For the separation section of the turbulent boundary layer we have

3 7 8 \3 »3
RelCl'it = _fcrit ‘\6“> crit Re”’clcrit (6-1-16)
Taking (6-1-11) and (6-1-14) into account we find that Re1 = 57, i.e. the Rel—
number is more conservative than Re with respect to the action of a longitudinal pres-
sure gradient.

In the region of gradient flows we note that the condition Re1 = const = n? is equiv-
— 10
alent to the Szablewski condition [209] introduced earlier— (%V —:—/‘F” = const = 7y,. /93

We thus obtain the limiting values of all parameters of the turbulent boundary layer of
incompressible fluid in the separation section.

6.2. Law of Friction of an Isothermal Boundary Layer on an Impermeable Surface
with dw /dx # 0

The velocity profile in the turbulent core of an isothermal boundary layer on an
impermeable curved surface, with (1-5-4) and (1-6-14) taken into account, has the
form

LI
e=et ((F)V ¥ %20+ 415 0, (6-2-1)
b

where ¢, (£) and ¢, (¢£) are functions in the approximation of the distribution of shearing
stress over the boundary layer cross section.
Specifically, for a third-order polynomial, we have:

@ =17,=1—3042% 9, =(1—9%
A 2 3 dw, _ 2 3 (6-2-2)

For the velocity distribution in the viscous sublayer we hzve the equation

-=Re"<£=)(‘2—’5 _aifiz’_) (6-2-3)

With the thickness of the viscous sublayer being defined by the stability criterion in
t’e form

Se(E ),
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we have from (6-2-3)

Cto (32) 3 __ Re, . -2-
L IS R R Ay e
(xS

At the boundary layer separation point ¥ = 0, and condition (6-1-16) follows from
(6-2-5).

Setting ¢ =1 and w =1 in Eq. (6-2-1), and ¢ = £, and w = w, in (6-2-3), we have /94
the following system of equations:
1
3 : ~ .
l—ao,= S(T)}/‘F%.?o () + <5 Ak, () a; (6-2-6)
&
o = ;5 Re* oty A ) (6-2-7)

(758 +548) (57 Re™* ) =Re. (6-2-8)

To determine the law of friction y, we add to this system the relationships used
earlier

=49, ) (6-2-9)
1;1=S£_. (1 — o)d¥; (6-2-10)
M =(2,5InRe* +38)"". (6-2-11)

The stability criterion of the viscous sublayer i{ei is defined by the formula

J Re,=116—42 (6-2-12)

Ao crit

to a first approximation.

The parameters in the boundary layer separation section are defined from the sys-
tem of Egs. (6-2-6) - (6-2-12), with the conditions ¥=0 and .\¢= Aorite
The results of a numerical solution of the system (6-2-6) - (6-2-12) obtained by

A. V. Fafurin on the "Minsk-22" computer, using an iteration method, are shown in
Figs. 6.2, 6.3 and 6.4.

It should be noted that negative values of Ay yield an unstable solution, and the /95

iteration process diverges; therefore only the diffusor flow results are shown in the
figures.
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FIG. 6.2. Influence of the
longitudinal pressure gra-
dient on the relative law
of friction. 1—Re** =2
X 10%; 2—Re** = 104; 3—
Re** =10% 4—Re** = 105,
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FIG. 6.4. Influence of various factors on the

characteristics of the boundary layer. (a)—

influence of longitudinal pressure gradient on

the integral characteristics of the boundary

layer: I—(S*/(S;‘\ -0 II—(S**/(S;*_ o HI—

H/Hx = o5 1—Re™ =10% 2—Re** = 105; (b)—

influence of Re**-number on the shape factor
of the separation of the turbulent boundary
layer (A& ).
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O crit
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FIG. 6. 3. Influence of longitudinal pressure gradient
on the relative thickness of the viscous sublayer (a)
and on the dimensionless velocit}y
the viscous sublayer (b). 1—Re" ™ =2 x 103; 2—Re**
=10 3—Re** = 5 x 10{; 4—Re** = 105 5—Re** = 105,

at the boundaries of

As can be seen from the
figures, a positive longitudinal
pressure gradient (or a negative
longitudinal velocity gradient) sig-
nificantly affects all characteristics
of the turbulent boundary layer.

It is clear from Fig. 6.4a that
Re** exerts a weak influence on the
dependence of the shape parameter
H on Ao/ Aucrit-

The calculated results can be
approximated in the range of Re**
from 10*-10¢ by the expression

AL)
Avcrit)’
{6-2-13)

H=mO+Q%

where H0 is the shape parameter
with A,=0.,

For the law of friction we find

Ay \18s
Agcrit /

=[]
( (6-2~14)
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6.3. Law of Heat Transfer in the Diffusor Region of a Quasi-isothermal Turbulent
Boundary Layer at an Impermeable Wall

The presence of a longitudin

between the frictional processes and heat transfer in the boundary layer. In this case
the properties of the heat transfer are quite conservative with respect to the longitudi-
nal pressure gradient, which has already been noted in comparing the distribution laws
for shearing stress and density of heat flux over the boundary layer cross section. As
seen from formulas (1-6-14) and (2-5-4), with the adopted assumptions the heat flux
density in general does not depend on the longitudinal pressure gradient, while the dis-
tribution of shearing stress depends significantly on the magnitude of f.

Ne
3

SN\
4 :
LA B0

FIG. 6.5. Distribu-
tions of shearing
stress 2 ‘r/powé 1)

LY

and heat flux q/qw
(2) at the boundary
layer separation
point.

Here

The distribution of shearing stresses and heat flux over
the boundary layer cross section is shown in Fig. 6.5 for the
separation region. Let us estimate the intensity of heat
transfer in the separation section of the boundary layer for

the conditions Pr = PrT =~ 1 and 6T< 5. In this case we can

take lT =1, and we have from (2-1-12):

3

-~ 4 l ’d
St ~ (T\ s (6-3-1)
./
Assuming q = ?0, and using (1-10-1), we find
St ~ 0,160 %2 2 (6-3-2)

oE ot -

Substituting the limiting velocity distribution (6-1-9) into
(6-3-2) and integrating, we obtain

b
e .
St~ 0,0688 ——= 0,02980" — "% (6-3-3)
(& - 1= (3
I
9, ="4'=StPrRe* ;1t, (6-3-4)

Neglecting [ (6 /6)§]% * in comparison with unity, we have

S 0.0265¢) 7 6-3-5
terie = | +.0,0295 (3/8**)crip 8 PRe** (6-3-5)
On substituting 6**/6 = 0.16 and £, from (6-1-14) into (6-3-5), we find
. 0.046
Stcrit"' (1 + 0.7lRe“)'-‘ (6"3‘6)
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Taking St, = 0. 0128 Re**-0- 25, we obtain

Stcﬁt 3 N 5

'S't': =~ Re®%002 + 0,7Re**s.12 * (6—3—7)

From (6-3-7) it follows that the ratio Stcrit/ St, is close to unity in the Re** range
from 3 x 103 - 104

With an increase in Re** the critical value of the Stanton number becomes less /98
than St,.
#ry: Thus the theoretical estimate shows that the law of
17 s ] : heat transfer does not depend essentially on the longitu-
" & |° &809 o I° % dinal pressure gradient up to the boundary layer separa-
0% Do | © ° tion point for the practical range of Re**. This important
as> IR deduction is in quite satisfactory agreement with the ex-
a; T q;i’jf 7 perimental data in Figs. 6.6, 6.7 and 6.8. It is clear
g from the graphs that the St-number and the temperature /99
FIG. 6.6. Influence of profile are almost unchanged with a substantial decrease

in coefficient of friction and a sharp deformation of the

velocity profile with an increased positive pressure

h . gradient. Nonetheless, it follows from this theory that
eat transfer according Re** — oo the St b lthough slowly. tends t

to the data of reference as ne . ¢ Si-number, a‘though slowly, tends to

[66] zero. This tendency is also observed in tests.

longitudinal pressure
gradient on the law of

Similar conclusions regarding the effect of a longitudinal pressure gradient are
also easily arrived at for the law of mass transfer.

u o
s .o <&4§M
42
%% -
H(Ree)® 25,10 - 7 —58 l —~28 ') 12,1
Symbol o) ° | © 0| ®
U .
/74
&
¢ 02 2 /73 48 10

FIG. 6.7.- Influence of a longitudi-
nal pressure gradient on the tem-
perature distribution over the
boundary layer cross section [66].
Curve—calculated from the for-

mula s = £r1r/7.
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FIG. 6.8. Influence of a longitudi-
nal pressure gradient on the veloc-
ity distribution over the boundary
layer cross section [66]. Curve—
calculated from formula w = ¢1 7,
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6. 4. Influence of Non-isothermicity on the Separation Parameters of a Turbulent
Boundary Layer from an Impermeable Surface

The velocity distribution in the separation section of a non-isothermal layer at an
impermeable wall, taking (1-5-4) and (6-1-4) into account, is defined by the equation /100

¢ .t
‘H + - "“’=2'5]/('32”- ’)Cﬁ VTE—T“E::E_' (6-4-1)
- X

In the limiting case when Re —~ «, ¢, — o, w; — 0, g — o, we have

(VT

dg
2;5 T e
§ VT €

(-—,% ..z (6-4-2)
crit
With p= P, we obtain (6-1-10).

Thus, the ratio of the limiting critical values of the shape parameters for non-
isothermal and isothermal flows is defined by the formula
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- - """ "% =--—-""//—-———~—yy

O PTN

a“cn_tz_( S’ V< d..,) . (6-4-3)

(‘—.g f ) ) s Po

._/crite
The value of this integral, with a constant coefficient of non-similarity of the

temperature- and velocity-fields, has been calculated in Section 4.1. With a gradient
flow, in the general case, € = €(£). Thus with an isothermal flow the velocity profile
in the separation section is defined by formula (6-1-9) . At the same time, in the Re-
number range to 104, the law of heat-transfer is almost independent of the longitudinal
pressure gradient and R 1/7.

For these conditions

FEYR XS (6-4-4)

where g, is the value of the non-similarity coefficient of the temperature- and velocity-
fields with dP/dx = 0.

As was shown in Section 4.1, the magnitude of ¢ depends weakly on the value of the
integral in (6-4-3). In addition, as Re** — » and Stcrit — 0, the non-similarity

between the frictional processes and heat transfer is reduced. If we take for these
conditions € = e, =1, we have*

(a) For a subsonic gas flow:

(= r)cm_( .

( 3 f) VV+1 (6-4-5)
[ 34d .
crite
(b) For a supersonic gas flow: /101
(o3 ’)qrit N [mm . 204" — 1) + 34
[ et —1} 13 — ) =29 e
(W') (v ) y* + + () (6-4-6)
crite

— arcsin

A ]’
Va@s —1) (4 + 8 + (39)°

Equation (6-4-6), as shown earlier, is quite closely approximated by the formula

(:T. ,)crit

(1) e

* Equations (6-4-5) and (6-4-6) were first derived by L. E. Kalikhman [36], but
not as limiting equations.

\ 1 k—1
= [—4—((?)"2 + ])‘! + TrT‘“SJ (6—4‘7)
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Taking LI into account, as found earlier, we come to the limiting velocity

distribution:

5 V ? do =35 S ? de. (6-4-8)
@

For subsonic velocities:

°=*— [ﬁ—ii@l— 1) Eo.e3)2 . (6-4_9)
For supersonic velocities:
E - 24* —1) + 3%
@ 575e 5 Sin, | aresin ———p————
2w l[ £ (6-4-10)
_"w"%l?'““m"%}— T T

where E=V4({*—1) (¢ + ) + 34)*.

Figure 6. 9 illustrates the effect of the temperature factor on the limiting velocity
profile at the boundary layer separation point, with subsonic flow. But here we cite
the curves for the case of an adiabatic supersonic gas flow with $*= 6. As can be seen
from the graph, the temperature factor rather weakly distorts the velocity profile in
the boundary layer.

Figures 6.10-6.12 present values of the critical parameters { , and

crit’ Hcrit
(6/6*%)

crit 28 functions of the temperature factor y for subsonic velocities. Hcrit

changes almost linearly as the temperature factor increases. As can be seen from /102
the graphs, cooling of the surface (y < 1) improves the stability of the boundary layer

to separation in the case of diffusor flow. With surface heating (¢ > 1) the stability of

the boundary layer to separation is lowered. As seen from the graphs, the region of
existence of supersonic nonseparated flow, with dP/dx > 0, is strongly limited in

supersonic gas flows. Figure 6.14 shows the dependence of the shape parameter on

the non-isothermicity and compressibility. The results of computing the critical

limiting values of the shape parameters (Figs. 6.10-6.14) can be quite closely

approximated by the following simple formulas:

(a) For the subsonic flow region:

H . .

. 6-4-11
Hcrit=1+l'2(¢_1)< '_CIEE-_'_f T ( )
Herito Herito *ferite T ¥ T ¥l
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FIG. 6.9. Influence of heat-transfer on the limit-
ing velocity profile at the separation point. 1—p*
=1;9$=0.252—9* =1, y =1.0; 3—p* =1; ¢
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FIG. 6.10. Effect of non-isothermal conditions
on fcrit (M << 1).
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FIG. 6.11. Influence of non-isothermal conditions on the shape parameter H ¢
(M << 1). a—cooled wall; b—heated wall. erl

FIG. 6.12. Influence of non-isothermal conditions on the momentum-loss
thickness in the separation section of the boundary layer (M << 1).
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(b) For the supersonic region:
Hegie = 2.419° 41,3884 — 0,52 for 34 < 0; } (6-4-12)
lerit flerite = #0129 for 34 =0,
6. 5. Joint Influence of Longitudinal Pressure Gradient and Transverse Mass Flow /104
As was demonstrated above, a longitudinal pressure gradient and a transverse
mass flow at the surface of the body substantially affect the laws of friction and heat
transfer and, under certain conditions, the boundary layer may be displaced from the

wall. With the joint action of these two factors the problem is considerably more
complex.

D. N. Vasil'ev [18] proposed a derivation of the limiting laws for this case, using
the Van Dyke perturbation method [19)}.

Equation (3-6-2), together with (1-6-6), can be written in the form (for g = 0 and
p = const):

T = +tr A () (6-5-1)
or

(&) ={% e+ tnl + 120 } (- R)"

ﬂ._'
"2

In this way, if we take into account the expressions for ¢, ¢, and ¢;, the probl.:m
reduces to solving the integers-differential Eq. (6-5-1). with boundary conditions

where Dy=

-..=0,- o=0;

o.=l. o=1. (6-5-2)
With Re — oo, cfo/z — 0, and Eq. (6-5-1) takes the form:
D,
&) =he(— d‘E) : (6-5-3)

This equation is not able to satisfy the boundary condition £ =0, w =

Following Van Dyke, we introduce inner and outer solution regions and expand this
solution into a series in the parameter T, =)¢ss/2-
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The solution for the outer region is represented as
=u'= Zw:]":. (6-5-4)

Substituting this expression in (6-5-1) and equating terms with like exponents in Yo» /105
we obtain (with an accuracy to within vo) the differential equation

dwd —_
";To:l/(_fa)?s (‘%) (6-5-5)

with boundary condition ¢ =1 with w = 1.

Here w{ is the outer solution of zero order in Yo-

Integrating (6-5-5) over £, we have
1
—_— dD,
“=1-y Ve ()« (6-5-6)
t

For the inner region we introduce a new inner variable wy =1 - yDy, and repre-
sent the solution in the form

i:Em:m.*{’.'. (6-5-T)

We substitute this relationship in Eq. (6-5-1), equate terms with like powers of
Yo» and obtain (with an accuracy to within vo), the differential equation

i  d
() =25, 450, (6-5-8)

de,
with boundary condition w, =0, w = 0.
Here w(i, is the inner solution of zero order in v,.
With £ — 0, ¢, =1 and ¢y — w, and hence
{

dey
Za, =¥+ . (6-5-9)

Taking the boundary conditions into account (wg =0, w}, = () we obtain
A b
o=} To'+ o, (6-5-10)

The identical result was found earlier (Section 5. 2) for the case of the injection of
a gas with a smooth plate in the flow. In this case the relative law of friction ) is as

yet a free parameter, and it is defined by correlating the solutions for the inner and
outer regions.
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We use the principle of limit stitching of solutions formulated by Van Dyke as /106
follows: "The inner limit of the outer solution is equal to the outer limit of the inner
solution, " i.e.

o (1) = o’ (0) (6-5-11)
Then, from (6-5-6) and (6-5-10), we have

1
VE+1=1—)=h 5 Ve(—&) & (6-5-12)

In essence we have found the limiting relative law of friction with the joint action of
a longitudinal pressure gradient and a transverse mass flow. In similar fashion, using

the additive method [18], a composite solution of zero order in vy, can be set up in the
entire region.

Following Van Dyke, we can write

. {o‘:-{- m:—m?(()),

(6-5-13)
o 4 o —a (1).
Here wg is the composite solution of zero-order in y,.
Consequently
=y SV?. (—{;—')d&-f-VTim.-{--'j—mf. (6-5-14)
o
Eliminating ¥ using Eq. (6-5-12), we have
iy : dD,
=V =N L{V?.(—Tg) dt
(6-5-15)

VR ()| (1= )

It can be seen from (6-5-15) that the solution consists of two parts: a singular part

b b
[“’o (1 - T)'*'T“’:]v entirely concentrated in an infinitely small region around ¢ = 0,
and a regular part, in the interval 0 < ¢ < 1.

With Re — o0, w,—~ 1, and, forall £ >0

~
—
(==
]

= (VTR VE (<) (6-5-16)

dg
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If the function ¢; does not depend on perturbing factors, from Eq. (6-5-16), taking

ws =1 with £ = 1, we obtain the limiting relative law of friction in the form

VI=(1—3)a—-vD. (6-5-17)
where

b
|_..__

Y ) =

R =

Thus the relative law of friction does not depend on a specific form of the function
¢3. The form of ¢; determines the parameter A pit with a given injection parameter b,

or the critical injection bcrit with a given shape parameter A.

It should be noted that the functions ¢, ¢, and ¢; depend implicitly on the perturb-
ing factors by way of the velocity profile, and any method of calculation based on the
self-similarity property of these functions for perturbations is inaccurate.

To determine the critical parameters we must solve the system of equations

F=VERVR(-F); (6-5-18)

o
75_-.,., =} (6-5-19)

_t—H{lo—1I )-—I
"= T

- 5 Dot (6-5-20)

e

where

with boundary conditions

t—0, 0=VT +—b—, 5,=0, I,=0; ‘
N . e (6-5-21)
""l' m‘-ly Jl_l-_T' J'—I—a—a-—— '
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FIG. 6.15. Relative law of friction from the numeri-
cal integration of the system of Eqs. (6-5-18)-
(6-5-20). ¥ = y/4,, where 3§ = (1-0.25 b)%; 6 = £/

fcrit' Points: @—b = 0; O —b = 3; curve calculated
from (6-5-22).
FIG. 6.16. Relationship between the permeability
parameter bcrit and the shape paramet_er fcrit ac-
cording to Eqs. (6-5-18) to (6-5-21). b= bcrit/

0 . - .
bt} Tortt = forit/ Terit? Topy 18 the critical shape
parameter at an impermeable wall; b(c):rit is the

)

critical injection parameter on a flat plate.
results of numerical solution of the system of _ )
equations; - - -)=calculation with (6-5-23); Oj test
points of B. P. Mironov and P. P. Lugovskiy.

The relative law of friction ¥(f, b) and the integral characteristics of the boundary
layer, ©6*/8, 6**/6, H, are found from the second boundary condition.

The system of Egs. (6-5-18)-(6-5-21) was derived and numerically integrated by
D. N. Kasil'ev [18]. He proposed a formula to approximate the results of the numeri-

cal integration

where f =f/fcrit

7= ('1'-— +)u—vre=m.

(6-5-22)

and the parameter fcrit depends on the longitudinal pressure gradient

and on the intensity of injection.

Figure 6. 15 shows the results of the calculation of the relative limiting law of
friction. As can be seen from the curves in the variables ¥, TG’ gas injection does not

have an appreciable effect on the relative law of friction. This effect is taken into
account by the dependence of chrit on bcrit’ which is shown in Fig. 6.16. Also plotted
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in this figure are the experimental data of B. P. Mironov and P. P. Lugovskiy [75]
and a computation using the formula they proposed

b .
s = (1= Fyene) ™ (6-5-23)

crite

As can be seen from the curves, the agreement between the assumed asymptotic
solution and the test data is satisfactory.

As D. N. Vasil'ev [18] has shown, simple analytic expressions can be derived
with the power-law approximation for the relative limiting laws of friction with joint
action of a longitudinal pressure gradient and a transverse mass flow. In this case,
from (6-5-20), it follows that

(1 — oY E. (6-5-24)

10

Then, instead of Eq. (6-5-18), we have

4‘4%=V‘:f_5_‘/(_—l —Z:m 3 ( B %\_ (6~5-25)

From this, integrating with limits from vy +b/4 to 1, and from 0 to &, we have

1 1

. b (_ap\ VE
5.;/;1—_7 =V(‘f=)5(_'7%) ke (6-5-26)
ﬁ’#r

The integral in the right-hand member of the equation depends only onthe velocity
profile under standard conditions. For boundary layer separation (§ = 0) we have from

(6-5-26)
b \?
V arcsin ‘/ [l —( 1 ) ] 6-5-27)

(—F)crie= L ’

where

L=5 (—- d‘li)e') 'Z/,E.— dE.

.2 Jp—
From Prandtl's formula and Eq. (1-6-7) we have I=(—dTDE'—) / V' Z,,, and hence

1

L= "VE dt. In case of an impermeable surface b = 0, and we have from Eq. (6-5-27):
. 1l
[ ]

YV Ferithe = 5 (6-5-28)
Hence
%V(f)_:z-_arccos Dos (6-5-29)
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at an impermeable wall, bcrit 0 is the critical injection parameter with f 5= 0.

where (f), = is the critical shape parameter

Formula (6-5-29) is in essential agreement with the numerical solution of the
system of Egs. (6-5-19)-(6-5-20). On substituting (6-5-27) into (6-5-26), after
rearranging, we obtain

arcsin h/ 1= v+ 5 ]=V7arcsin [‘/ :T%—)—] (6-5-30)

or

V¥ =cos [/Tarcces —:—-]v-:m (6-5-31)

Taking Spalding's formula [229] for I, we have (with Re — o®): /111

0<t<a, 1T=x, }

(6-5-32)
a<t<ll, I=uxa,

where x and a are empirical constants (for an incompressible fluid x = 0.4, a = 0. 2).
Hence L =9.8.

From Eq. (6-5-28) we have
V(—fm_m) = 0,4« = 0,16

(6-5-33)
(—Fierien) = 0.0257.

Integrating (6-5-26) over w from Vi) + b/4 to w and over ¢ from 0 to £, we obtain
the limiting velocity profile:

arcsinwo — arcsm —i-) V (1) L), (6-5-34)

where

t _

VE
LO=\+ &

i3

After rearranging, we have

[;/J, (arecos 5 )(l —1I) j (6-5-35)

where L = L(¢)/L(1), fs = fé/fécrit'
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It should be recalled that Eq. (6-5-35) is valid in the region ¢ > 0 (outer solution).
In the separation section of the boundary layer 5= 1
[]
& i = COS [(l — L) arccos T] . (6-5-36)

For an impermeable plate (b = 0)

o=cos [(l —l)%V(—f—j- (6-5-37)

For the separation section, with b = 0 /112
©cric =sin [ 5L |. (6-5-38)

With ?6 =0, w =1, and, with Spalding's formula for 1, we have

— . 3aVE .
L= rmya e 0<t<a

e (6-5-39)
L=L @+ “Tiz"ya@ with g < &< 1.

Using Eqgs. (6-5-34) and (6-5-39), D. N. Vasil'ev calculated the integral charac-
teristics of the boundary layer for the conditions adopted.

P :
. FIG. 6.17. Distribution of velocities in the
‘ separation section of the boundary layer

b=0,1f= fcrit)' Curve—results of numer-
] ical integration; o-Stratford's experimental
points [234]; f* = fH.
[
o

g
L ¢ A5 B0

In particular, in the boundary layer separation section at an impermeable wall

ase 3 oo
T= 0,157; T—0'37’
Hcrit = 2,36;

: 6-5-40
(—Ferie) = (1, %) =0.00946; } ( )

(—fCae) = (—faaT”) =0.00401.
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We see, on comparing these values with the formulas (6-1-11), that the more /113
accurate accounting for the effect of the longitudinal pressure gradient on the distri-
bution of shearing stress over the boundary layer cross section is essentially reflected

in the limiting values of the shape parameters H_ ., and fg:it’ and has practically no

effect on the parameter 6**/8. Figure 6.17 presents a comparison of the limiting
velocity profile in the separation section at an impermeable wall with Stratford's data
[234]. Note the satisfactory agreement between experiment and calculation.
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PART II: PRACTICAL APPLICATIONS OF THE ASYMPTOTIC
TURBULENT BOUNDARY-LAYER THEORY

CHAPTER 7
BOUNDARY LAYER ON AN IMPERMEABLE SURFACE /
114
7.1. The Influence of Finite Reynolds Numbers on the Relative Laws of Friction,
Heat and Mass Transfer on an Impermeable Plate

The asymptotic theory of wall turbulence presented in the preceding chapters, as
well as all the limit formulas ensuing from this theory, are applicable, strictly
speaking, only in the realm of infinitely large Reynolds numbers.

The question as to whether the relative limit laws are applicable for turbulent
boundary-layer calculations at finite Reynolds numbers remains open, and the final
answer to this question can be obtained only by a direct comparison of the limit for-
mulas with the existing experimental data.

The problem of the effect of compressibility and nonisothermicity on the laws of
drag and mass transfer in a turbulent boundary layer of gas is of great practical sig-
nificance in various branches of contemporary technology and has been attracting the
attention of many researchers, both here and abroad.

Shown in Fig. 7.1 are the ranges of temperature factor and Mach number that
have been covered by experimental research. The initial experimental data and con-
ditions of the most fundamental research in this area are given in Table 7.1. As can
be seen from the graph and table, a rather broad range of governing parameters /115
(%, Ay, M, and Re**) has been covered experimentally up to the present time for flow
of a supersonic gas stream past a plate. For instance,: the enthalpy factor i, varies
from 0. 01 to 20, the Mach number up to 10 and the Re** number up to 10°,

mw:.’!ﬁ r ! ! ’ -_]
7 !
L ‘5/_4
5— — 3
) ."v
oy /
" T 3 ;

a,ﬂ;
Lo,

FIG. 7.1. Ranges of application of the
& parameters ¢ and M, covered by ex-
P 2 periments devoted to measurement of
/ 1 turbulent drag and heat transfer on an
L 4
.
—T

2

™

impermeable surface.

° °ﬁ
2 =5
o & ° &
P o
l 4 [ 4 L/ 4

89



Table 7.1. Comparision of the experimental data on turbulent friction on a flat plate

. Experimental Method of determining
Authors Re ¥ Conditions e
Coles [ 18] 2,6 6600(1,0 0,638 Thermally insulated Direct measurement
Re®® == idem, 2,6 (10200/1,0 0,641 plate with a floating element
Re, = 8.100 3,7 410011.0 0,516 )
3.7 7560(1,0 0,499
4,5 2900it,0 0,460
4.5 347011,0 0,455
4,5 5240(1,0 0,424
4,5 6590(1,0 0,429
8,99 | 1245 0,197 Cooled wall of a From the velocity gra-
9,04 | 1607 0,235 conical nozzle dient at the wall
9,07 ] 1908 0,234
s (30| 27 0| o
Re®*? == idem : ’
8,35 | 2498 0,265
8,27 | 2885 0,259
8,29 | 3202 0,247
8,29 | 345] 0,239
2477 0,403 Thermally insulated Direct measurement
Korkegi [162) 2780 0,400 plate using a floating element
Re®® == idem 3429 0,400
4040 0.397
5350 0,369 Cooled wall of a From the velocity gra-
6 480 0,381 plane nozle dient at the wall and by
7950 0,341 Reynolds analogy from
Lobb, Winkler and 7370 0,329 measurements of the heat
Persh [173] 8 550 0,251 fluxes in the test cross
Re®® = {dem 12 640 0,234 section
8 400 0,244
7 960 0,251
8 440 0,217
0,885 Thermally insulated From velocity profile mea-
Wilson [ 245} 0,851 plate surements and the momentum
Re, == idem, 0,828 equation.
Re, ~ 107 0,810
0,770
1,0 0,985 Flow past a thermally| Direct measurement of
1,0 0,929 insulated cylinder in mean cross sections.
Chapman and 1,0 0,746 the longitudinal direc-
Kester [113 1,0 0,671 tion
Re, == (6~ 16) 10 1,0 0,623
1,0 0,578
1,0 0,551
Liepmann and 1,0 0,989 Flow past a thermally Direct measurement of
Dhawan [113) 1.0 0,966 insulated plate local values
Re, = idem, 1,0 0,965
Re, = |-100 1.0 0,829
1,0 0,790
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Table 7.1. Continued

2 Experimental Method of determinin
p xperime g
Authors My R ) F ) v Conditions cf
2,81 0,400 0,867 Hollow cylinder From the change in
Sommer and 3,82 0,268 0,730 moving against model flight velocity
Chort [223) 5,63 0,176 0,562 the flow in a
Re, == idem, 6,90 0,161 | 0,404—0,45]1 | wind tunnel
Re, = (3--9)-10¢ 7,00 0,162| 0,395—0,446
3.78 0,272 0,694
3,67 0,285 0,724
R0 ) 2,43 1,0 0,680
Rubesin [113)
Re, == idem, 2,65 1,0 0,705 From velocity pro-
Re, = 7-10¢ file measurements
Brinich [109]
Re, == idem, 3,06 1.0 0,625 Lo From velocity pro- °
Re, = (3—18)-10¢ Cylindrical surface files
Abbot [154] 3,80 0258 072
Res = e 7.20 0.173| 0340
.=

|  Comparison of experimental data on turbulent heat transfer on a flat plate (ratios of the

Stanton numbers St/st, for

Rex = idem)

Authors M St/St, Experimental Method of determining
Conditions St
Bradfield and 2,586 0,67—0,77 Flow past a cone Measurement of the heat
De Coursin [ 106} 8,180| 0,535—0,700 transfer by a non-stationary
410 0,547—0,610 method
1,823 0,795—0,900 Uniformly heated From the expenditure of
Pappas [190] 2.290| 0.675—0.790 |plate electric power and from
the wall temperature
2,00 0,763 Uniformly heated From the expenditure of
Schoulbey [ 106]* 2,50 0,675 plate electrical power and from
3,09 0,600 the wall temperature
2,5 0,744 Data not given
Fallis [138] 2.6 0,745

ED i ) T ¥ T Sevems
Ldra reduced w weiiingdi—itng

lation conditions by the method of Van Driest.
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The experimental data cited in Table 7.1 as compared in Fig. 7.2 with the limit
formula (4-1-4). The experimental data obtained in the presence of heat transfer are
reduced to thermal-insulation conditions by formula (4-1-2). The frictional-drag
coefficient for standard condition (cfo) was calculated by formula (1-10-3), the 4 and p

that occur in Re** being determined from the free-stream temperature T,

v
49

(74

a ! > FIG. 7.2. Effect of gas compressibility on
) 5 the relative drag law. 1—Re™* = 10%; 2—

& ' Re** = 4'10%; 3—Re** = 1.4 + 10%; 4—Re**

o R = 10%; 5—Re™** = o0,
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As can be seen from Fig. 7.2, the agreement observed between the experimental
data of the various researchers concerning the influence of compressibility on the
frictional-drag coefficient and the limit formula is not only qualitative, but, in some
cases, quantitative as well. All the experimental points are found to be above the
limit formula, and a tendency toward stratification of the experimental data according
to Re** number is noted. Considering the relatively weak influence of Re** on the
value of the relative friction coefficient, it is completely permissible to introduce the
values of the parameters Z and w corresponding to isothermal flow as a first approxi-
mation into Eqs. (4-1-1) and (4-1~13), that is,

Zy=1—o0, }
O =0y =Py c"g"

(7-1-1)

For a plate, ¢, = 11.6. After substituting these values for Z,, and wy, into Eq.
(4-1-13), we get 120

I.
@ —1) (1 —8.2Veg)y
2(4*— 1)+ A

.x[arcsm—;—_p—_—-_-—_—;—-————r——y“ T T (7-1-2)

_18.4(4° =) Vg +oab ]',

TS A D @ T o9 £ A

¥ =
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For adiabatic flow,

1 (arcsln‘/ ; —arcsin 8, 2V Py c,.) (7-1-3)

1—-8.2Ve¢s

At subsonic velocities,

Y= 2 ’. _—
[Vf—&?(ﬁ—l)l/c—,..{-: ] (7-1-4)

The results of calculating the parameter ¥ by formula (7-1-3) for various values of /121
Re** are shown in Fig. 7.2. As can be seen from the graph, the very first approxima-
tion yields satisfactory agreement with the experiments.

Spalding [164] has proposed simple approximating formulas for Egs. (7-1-3) and
(4-1-4); they have the form

7 [“’léz—".-‘l‘«‘)” ] (7-1-5)

where 7, is the limit friction law;

7= 10" 4 [ +onull =9 +oul — o) rtF
(7-1-6)
LA k—l 22 13
XM|" g i M, |
Taking Egs. (1-11-2) and (1-4-4) into account,
®,,=123(Re**)""*, (7-1-7)

For the region of large but not infinite values of Re**, the value of wy, is signifi-
cantly smaller than unity. From formula (7-1-6) it follows that in this case

o= (p)—12. (7-1-8)

Correspondingly, from Eq. (7-1-5) we get

1/2 __ .3 onn—1/8 1 —1/2 2
= [lwea 1.3(Re**) ”a¢ ] . (7_1_9)
L 1 —-1,3(Re**)™
Expanding into a binomial series, we have
¥ Q’““ + 2,6(Re")-"8 (l - q’-—llzw;n!)l. (7_1_10)

Let us examine three limit cases:
a) M< 1,
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then, ¥_ »2/(1+4) as ¢—1,

and

7 —-‘!.[l +0,65 Re*)™* (1 -+ (7-1-11)

Thus, when a wall is heated, ¥ > ‘Fm , and when it is cooled, ¥ qrn;

b) the Mach number is very large and the wall is thermally insulated; in this case

Tw =T'W [
B\t 12 1 -1-
( ) =5 (7-1-12)
and
T=W_[l4 0927 (Re*~"""}. (7-1-13)
From Eq. (7-1-13) it is evident that ¥>W«
c) the case Pp*—ro0, APp5~0.
Taking into account Egs. (7-1-3) and (7~1-11) we get
—
‘\i _ 1 ——:-arcsln ¢! -‘;1_6_'14 Vc;. ‘
= 5 — .
| ——¢arcsin 8,2 Vg
where
\7’:( 1 ) : (7-1-14)
1o (89=0) JRe*"r
V= ,’ ; (7-1-15)

The experimental data of Matting, Chapman and Nycolm [176} are compared in
Fig. 7.3 with (7-1-3). The experiments were carried out over a broad range of Re

and Mach numbers. The frictional drag coefficient was measured by means of a float—

ing element with a maximum error of 5% . The transition from ¥ to ¥, = (:'—:)‘.

was realized by means of the integral momentum relation.

For a plate the integral momentum relation can be written as

dRe** cf. — -1-
T =Re , ¥ -5-=Re W’zme,,’m (7-1-16)
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After integrating and transforming, we get

3
W,:‘FMH .

(7-1-17)

As can be seen from Fig. 7.3, the first approximation yields friction coefficients
which are somewhat too high, especially at high Mach numbers. The second approxi-
mation yields almost complete agreement with the experimental data, when

Z=1—0, o,=116 l/ up@%.

“ @RW‘X e _"_""_‘ﬂﬁﬁ
"""""" Y
.m_ L cosomacndaimal Mpdl

- - — —
—— e o= ———
——- - — -

(7-1-18)

FIG. 7.3. Comparison of the limiting
formulas with the experiments of
Matting, Chapman and Nycolm [176] .
— — — ) calculated by formula (4-1-4):
- - - ) calculated by formula (7-1-3);

) calculated by formula (7-1-20).

O e e e e > e e e .

——‘--_n-oo-o_q_____ﬂfzg

4 1 ‘gﬁel .
] H &

The final computational formula is

1
@°—1) (1 8.2} Tz

: 2(9* — 1)+ 3¢
X[msm Vg =D 0" + 30+ av (7-1-19)
._ v o :
—arcsin 184 = T oo+ 3 ] .
Vagr =D + 3 + Qo)°
For the case A¢=0 (124
=y =g .
w=¢.x (arcsin V¢ 7 —arcsin 8,2 V e lq‘wcfo (7-1-20)
=1 1 —8.2V Ve, '
and for subsonic velocities
P = 2 ".
Ve—8.20—1) ) ¥ cs + 1 (7-1-21)
For the case y —0 it follows from (7-1-21) that
2 ]
ur"‘°_'[ 4.0 (¢ 1 ] ) (i-1-22)
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The results of relative drag-law calculations by formula (7-1-21) are presented in
Fig. 7.4. As can be seen from the graph, with strong wall cooling (y< 1) and heating
($>1) the Re** is observed to have an appreciable effect on the magnitude of the rel-
ative friction coefficient. Given in Fig. 7.5 is a comparison of the existing experi-
mental data with formula (7-1-21). Despite the great scatter of the experimental data, {125
the agreement of the proposed computational method with experiment can be consid-
ered satisfactory.

FIG. 7.4. The effect of non-isothermicity on
the relative drag law: Curves calculated by
formula (7-1-21): 1—Re** = e0; 2—Re** = 10;

? > 3—Re** = 10% 4—Re** = 10%; 5—Re** = 10°.
23
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2 [ d
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FIG. 7.5. Effect of non-isothermicity on the
relative laws of drag and heat transfer on a
flat plate: 1—calculated by formula (4-1-5);
2—calculated by formula (7-1-21) for Re**
=1,000, ¥ = ‘I’/‘I/M; ¥ = Tw/T**

o
=S HHHHEAHHL
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- Equations (7-1-20) and (7-1-21) enable us to take into account the effect of the
Reynolds number on the relative drag law, but this effect is not great in the practical
range of Re**. For practical calculations, therefore, it is convenient to retain the
relative laws of drag and heat transfer in the form of limiting relations (4-1-2), (4-1-3)
and (4-1-5). In deriving the limiting laws the choice of the ""standard' conditions, i.e.
the friction coefficient ¢ £’ leaves unanswered the question as to the temperature at

which the viscosity coefficient appearing in Re** should be defined, the friction
coefficient ¢, being calculated in turn from Re**,

This question arises when practical calculations are being made and when the
relative limiting laws are compared with experimental data.

In the, computational method proposed above, based on the introduction of the /126
second approximation, all the physical gas parameters appearing in Re** are
determined from the thermodynamic temperature at the outer edge of the boundary
layer.

As a result, it is possible to get good agreement between the computed and the
experimental data, but the computational formulas have become complicated, com-
pared to the limiting ones. The variable viscosity in the laminar sublayer can affect
the relative laws of drag and heat transfer only with finite Re. Since #—>0 as
Re—>00, as was demonstrated earlier, the temperature T, at the outer edge of the
viscous sublayer tends to Tw’ and in such a case the viscosity may show up in the

wall layer having the temperature Tw'

If, taking these arguments into account, the gas viscosity assuming is Re** is
determined from the wall temperature, the limit drag laws change to:

a)

for the subsonic velocity region;

b)

e/ E—1
My r——

TE=T L\
m [ arcg M, r—s
v (Pw) ( V 2 ); (7-1-24)

for the supersonic velocity region on a heat-insulated plate;

c)
' 2
v B \™ 2arctg M, l/ r k—,)_—l (7-1-25)
°'_(_P._) [ Te TR
'TT"—"}‘-l)M.] r—%
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for the supersonic velocity region and heat transfer, taking (4-1-11) into
account.

Given in Fig. 7.6 is a comparison of formula (7-1-25) with the existing experi-

mental data. The complex
r 2
¥-v, )"(l Ty ! )
2

[
»\ Pw

is plotted on the ordinate axis.
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FIG. 7.6. Influence of non-isothermicity (a) and compressibility (b) on the
relative laws of drag and heat transfer. The curves were calculated by
formular (7-1-25).
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As can be seen from the graph, all the experimental points are located along the /127
curve describing the limiting relative drag law. _—

For the domain of existence of the triple Reynolds analogy, then recommenda-
tions can be applied to the laws of heat and mass transfer. The question of whether the

laws of heat and mass transfer are conserved when the boundary conditions change will
be examined in Chapter 7.

Thus, for engineering calculations of friction and heat transfer during the flow of
a compressible gas under non-isothermal conditions, we can use the limit relative
laws of drag and of heat and mass transfer if the standard values of the coefficients

Cto St:o and StDO are calculated from Re**, in which the dynamic viscosity coefficient
is determined from the wall temperature.

F

DU AN WL NN IIRIT Oy

gr g q ai6 amy | @2 7. g5 aa/fv

FIG. 7.7. Comparison of the limit velocity
distribution in the turbulent boundary layer

of a compressible gas with the experimental
data of [175].

------- calculated by formula (4-2-2)

r -—-—_.I-——— aresin V¢.—l [re arcsan-w._l
T Y e ve ¢ I
7 .

M, 1,47 27 2,9 4,93 1,88

Re®® 4,8-108 7.100 5,4.10¢ 5,35-100 3100
Symbol Q ° A o v

M, . 2.1 2,57 2,96 1,97 4.8

Re** 2,78-10 3,24-100 | 2,64.108 | 2,98.100 | 3,47.108
Symbol o @ © o <
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Ko i FIG. 7.8. Effect of compressibility of the gas
< on the value of the shape parameter H. Curve
5% calculated by the formula H = 1. 28%*0. 95;
20} 2 experimental data: o—[134]; ®—[155].
Rad | %
&§ 8 W 2 K % B

Also p0551b1e are other recommendations for determining the parameters appear-
ing in Re**. Thus, for example, according to the calculations of Spalding and Chi
[227], the limit formula gives a mean square error of 9. 9% when compared with all
the available experimental data of the formula is written as

1 . 20°—1) + 3¢
¥ —F ——-[ arssit —————————————
RI* — V_—;:__——_—_
© =i " — )¢+ 39 + Qv)? (7-1-26)
L ]
— arcsin = !

Vi -+ +69° 1

where FR =y~ 0, 702 d,—o. 12,

A comparison of the limit velocity distributions with the experiments of various
authors is given in Fig. 7.7, and the effect of gas compressibility on the value of the
shape parameter H is shown in Fig. 7.8. As can be seen from the graphs, the limit
velocity distributions in the turbulent boundary layer of a compressible gas are in
satisfactory agreement with the experimental data.

Given in Table 7.2 are the results of comparing the experimental data on the
friction coefficients on a flat plate with those calculated by I. K. Ermolaev using for-
mulas (7-1-19) and (4-1-2). The table shows that the use of the limit formulas to
determine viscosity from the wall temperature yields a mean square deviation of the /132
calculated friction coefficients from the experimental ones, within the limits of the
experimental accuracy of about 10%.

7.2. Solution of the Integral Momentum and Energy Relations for a Turbulent
Boundary Layer on an Impermeable Surface

The integral momentum relation for a plane boundary layer is conveniently
written in the following form:

AR | Re,f (1 4+ H)="TRe, (7-2-1)

where
Re*® oy = p,10,3**/18ees R€, = p,woL[1tee:

100




Table 7.2. Table of mean square values A =

°t exp - °f theor

f theor
First approximation From py,
Acc. to [Separately |Total for] Accord. |Separately|Total for
Author M, Ay :;;ch au-| for all to t«;ach Affr 0 all |Reference
or sep-|  A$=0 authors | 2uthor = authors
gy |t e | KN |ernd spun | T
Spivak (1950)| 2.8 0 6,915 | 8,740 4,709 f 9,1105 | [259)
Brinich et s, (1952) 3,05 0 7,582 | 8,740 10,67 9,1105 [1241
Dahwan 1952) | 0,35—1,45 0 13,69 | 8740 12,76 | 9.1105 (124
Monagan et al. (1952)|2.82—2.43 0 6,806 | 8740 8,266 | 9,1105 [261]
Coles (1954) | 2,6—4.5 0 11,09 | 8740 8.117 | 9,1105 (118]
Wilson (1950) | 1,9—2,19 0 10.53 8.740 9,076 | 9,1105 (245)
Rubesin et al, (1951)| 2,5 0 8,881 | 8,740 5,715 | 9.1105 [203]
Chapman et al.. (1954)|0,81—3,6 0 5,652 | 8,740 6,406 | 9,1105 [113]
O'Donnel (1954) 2,41 0 11,58 8,740 6,36 9,1105 [129]
Hakkinen (1955) [ 0,18—1,76 0 9,007 10,94 8,269 10,05 [147]
Matting et al. (1961)[2,95—9,9 0 6,567 10,94 | 8,87 10,05 [176]
Goddard (1959)| 0,7—4,54 0 12,71 10,94 | 15,4 10,05 | [263]
Abbot (1953)| 3,9—7,25{ 1—1,8 | 17,06 | 14,81 23,44 | 11,99 [264]
Monagan et al. (1953)|2,43—2.82 33,6 | 19,56 | 14.81 14,91 | 11,99 [262]
Pappas ?954) 1,60—2,271 1,7—2,19] 12,60 | 14,81 11,26 | 11,99 [190]
Sommer et al, (1955)|2,81—7,0 |1,05—1,76] 8,720 | 14,8l 13,21 | 11,99 [223)
Hill (1959) | 8,99—10 | 6,1—9,0 | 18,20 | 14,81 14,821 | 11,99 [155)
Winkles (1961)] 5,20 3,5—5,5 | 18,09 | 14,8] 16,03 | 11,99 [246]
Jeromin (1968) [ 2.5—3,5 | 2,2—3,6 | 8,20 | 14,81 4,9 | 11,99 [156]
s . . . . . . A dw,
B is the dynamic viscosity coefficient at the stagnation temperature; and f= o dx
is the shape parameter.
We represent Eq. (7-2-1) in the form
dRe**y _ s rf .
*R_el_# =¥ )o "f(l +H) fcnt (7-2-2)

and linearize the right-hand side of the equation.

as

where

Y=VUY,7,,

and \l’f is determined from the graph of Fig. 6. 2.

(7-

The relative drag law is represented

2-3)
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We represent the right-hand side of Eq. (7-2-2) in the form
F=T%, 5 — (1 +H cie) feriel: (1-2-4)

this approximation is exact if f= 0; a small error is introduced when f— 1, but since
WelWar(cro/2) K (1 + Hcrit)fcrit’ this error is insignificant. Then the integral momentum

133
relation, after appropriate transformations, reduces to L——

dRe** Re**y, du, . i, .
o+ (o) 5 =TT, S Re,. (7-2-3)

Taking Egs. (1-11-2) and (7-1-25) into account, we have

d Re** Re*®y dwy __
b (V4 Herie) o a7 = T

Qe

Bw \™ B
X ()" Re, prgerege -

(7-2-6)

Integrating, we get

"lg-"'a'”

h . (7-2-7)

x(%)"‘uu—u')‘—"—exp(f)dx-;-c -

— - J

where Rey = poowmaxL/u 005 Poo = Poo/RT g5 Py is the total pressure;

I=m+1) j (1 4 Herie) diwy/we; U= @, @maxs
Brax =V 28ics; Hege = 2,414* 41,3839 —0,52.

Thus, for given laws of variation of wall temperature and velocity at the outer
edge of the boundary layer with respect to the coordinate x, we determine the local
values of Re**,, fromEq. (7-2-7). The integration constant C = (Re;""'¢) when £ =7,
2, is the section at which integration begins.

In the particular case of the turbulent boundary layer beginning to grow at zero,
C = 0. If the turbulent boundary layer is preceded by a laminar boundary layer, the
laminar boundary layer is calculated upto the moment it changes into a turbulent one
and the integration constant is determined from the value of Re**y, for the laminar
boundary layer in this section.

The local values of the frictional drag coefficient are determined by the formula /134

cy=T¥ —o (4 ')"‘. (7-2-8)

Re ;’" oo
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where ¥ is calculated by formula (7-1-19) or by the approximating formula (7-1-25).
The value of \Ilf is taken from the graph in Fig. 6.2. The shape parameter f, which is

needed for determination of f . -f/f

cri crit and subsequent determination of \I'f, is calcu-

lated by the formula

f= _ Re**,, au

1 dz° (7-2-9)
Reo Ut (1 —Uz)*!

The quantity fcrit is determined by formulas (6-4-6), (6~-4-7), (6-4-12) or by the

graphs in Figs. 6.10 and 6.13. In the cross section where the shape parameter f
reaches the value fcrit’ the turbulent boundary layer separates from the wall.

For the subsonic gas flow region Eq. (7-2-7) is reduced to

. .z !
Re** — exp(—- ;%} {:("' '4; hs Re,j- ¥, exp (Ndx+ C}m“ (7-2-10)
Xy

where Re,=p,w,,L/n,: w,, is the velocity at the outer edge of the boundary layer in the
initial section X = Xg3

Ty=w,/w,,; J=(m+|)f(1 + Heri) d,;f. .

The parameters Hcri ¢ and fCr are found from formulas (6-4-11).

it

At constant wall temperature ¥ = const

z
Re**,, = ﬁ;' [l —;m B ReowwtaoS E(')-'»(H’M)‘dx
’.

. (7-2-11)
+ (Re*,, 'T"o):?:mjm
where Re**y = p,wd**/by; Reow = poto,L/isy,;
v, = (—V;T)'; [ =Re*,, /(Reow0y) 4, /dx; =1+ Heriy
The drag coeffiéient is calculated by the formula /135
=T, T,B(%e*,)"" (7-2-12)

For the case f flow around a plate (dP/dx =0) the integral momentum relation has
the form
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d Re**
dz =Re w 2Re“"‘

Integrating we get

Re**= [—(m+l)Re,_£ T dz 4 (Re**, )_“]"*'

Taking Eq. (7-1-25) into account,

2 L E—1
M, r—y

k—1 '] —
Rev* = |F 1 Bp, ) A S(
x

In the case of constant wall temperature

k—1

Lw k—1

=+

X (7;__’_*__()' ,(z}——- )+ (Re*)2 %

If the turbulent boundary layer grows from the leading edge of the plate,

E—1 L
arctg M r —s— Y
Ress, =]+ e eV 25 () Reew
l M V R—1 Vi+!
. r—
The local drag coefficient is determined from the equation
B LR m
c,-? = "m_BwnH-lR T mir

W

Thus,

1
(‘h)::. wmjl' ’ —a-)ne =( *l‘:)mﬂ w—r

For more accurate calculations we can use the second approximation, i.e.

(7-1-19). In this case Eq. (7-2-18) is written as

—_g_ B _(®\"
o=q Re;"'(*‘w) '
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ree) X () e+ Retnl”

(7-2-13)

(7-2-14)

)
Tem

7-2-15)

(7-2-16)

(7-2-17)

(7-2-18)

(7-2-19)

formula

(7-2-20)
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¥ being determined by formula (7-1-19) and Re**w by formula (7-2-16). In the case of

gas flow near the forward point of a blunt-nosed body, the velocity at the outer edge of
the boundary layer varies according to the linear law

Wo=CWnZT, (7-2-21)
where w; is the free-stream velocity and X = x/D.
The constant ¢ depends on the shape of the body universed in the flow and is close

to unity for blunt-nosed bodies. If it is assumed that W;a 1 for the accelerated flow
region, then for the subsonic gas flow region at constant wall temperature

Re** = 0,0136%°° Re)c 2z - 1. (7-2-22)
and the local friction coefficient is
2 =0,0375%2Re; 2 0.2 0.9, (7-2-23)

Thus, in contrast to longitudinal flow past a plate, where c¢;~z-°2, when the flow is
crosswise to the plate, ¢yj~z-%+. The mean drag coefficient is

a) L
Ty =T Sc, dx=0,072%"*Re]?; (7-2-24)
0

for longitudinal flow past a plate, and

b) & prans= 0+125%,"Re[**; (7-2-25) /137
for a transverse flow.
Thus,
Stomam _ y 739 (7-2-26)
¢f long.

A number of other practical problems can be solved by means of the integral
momentum relation. Thus, for example, it is not difficult to determine the law of
change in area of a diffuser at whose walls the turbulent boundary layer is in the pre-
separation state. In this case the frictional drag coefficient at the wall will equal zero
and the integral momentum relation for the flow of an incompressible fluid in a plane
diffuser is written as

d3*e | 3% 4o
Tt o G 2+ Herig) =0 (7-2-27)

or

e d
'dsoo =""(2+Hcrit) %' (7-2_28>
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Assuming in the first approximation that the boundary layer growing at the diffuser
walls does not affect the parameter of the fluid in the flow case, the continuity equation
can be written in the form

G = pewy s Fy = pewsf =const, (7-2-29)
where F is the diffuser cross-sectional area, F; the area of the initial cross section
beginning with which f =1 ., and cf = 0, and wy, is the velocity of the fluid in the initial
cross section.

After integrating, taking Eq. (7-2-29) into account, we have

30 = 3%, (7,-F_‘)2+"cr§t (7-2-30)
1
where 6** is the momentum loss thickness in the initial section.

On the other hand, for the shape parameter f we have the formula

3 d 3** dFf
ferit =;.—di;‘= —F ax’ (7-2-31)

where F = F/F;.

Taking Eq. (7-2-30) into account,

forigm— 8%, (' *esie SE (7-2-32)
After integrating we get
f_‘__
. ..
P=- [l —@+ HY a'.c-'?t(x—x.)] *erit (7-2-33)
_ If it is assumed that Hcrit and fcrit are their limit values (Hcrit = 1.87, fcrit /138
= -0. 01), then
él_
87
F= [l +93—i'9.?(x—x.)] ’ (7-2-34)

The problem is solved analogously for a cooled diffuser, as well as for the flow of

a compressible fluid. In particular, Hcrit — 0 for intense diffuser wall cooling condi-

tions, when § — 0, and it follows from (7-2-33) that
G=[1+ T (x—x,) ]”’ : (7-2-35)

Of great practical value for supersonic aviation is calculation of a supersonic dif-
fuser without separation. The configuration of the throughput section of such diffuser,
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corresponding to the pre-separation state of the boundary layer on the surface of a

duct, can be determined by resorting to the integral momentum relation and the limit
formulas for the critical shape parameters.

In the two-dimensional diffuser case the integral momentum relation for a bound-
ary layer in the pre-separation state can be written as

d‘.. a‘. dU
T T @ @+ Hen) =0, (7-2-36)

where U = wy/w
* ¥ max

The parameters U and y* are interrelated by

. l—(1—r)U2 _o_

The dependence of Hcrit on ¥* and Ay, as was shown earlier (see (6-4-12)), can be
approximated by the formula

H crit =2419°*+1,38¢° (§—1) —0,52. (7-2-38)

Integration of Eq. (7-2~36), with allowance for Eq. (7-2-28), yields

3se (Uf )11.94—0,7(3—1)1 | — Uz \1:240.7 (3=1) (7-2-39)
s, \L < 1—-u? ) ’
The expression for the shape parameter f can be written in the form
3 1 4
ferit = TU—.-——L,‘) . (7-2-40)

Substituting Eq. (7-2-39) into Eq. (7 -2-40) and using the dependence of the shape
parameter fcrit on y* and Ay obtained earlier (see Fig. 6.13), it is possible to deter-

mine the dependence of the dimensionless velocity U at the outer edge of the boundary
layer on the longitudinal coordinate X, corresponding to an attached gas flow in a

supersonic, shockless diffuser. In particular, for the case of a heat-insulated wall
we can use the formula

- —_ () — -1,83
!icnr'th. M.-.,..=['_T‘_'_U+)Ui] . (7-2-41)
Then
¢ I—(—nUpe gy (1 -—Uz)'.l 2fecrits
S o W X e ). (7-2-42)

[ Y
The corresponding change in area of the duct throughput section is found from the
continuity equation, which, for the conditions being considered, can be written
conveniently as

107



¥ 1
|~y

V-t FaU,—U]) " Fy = const. (7-2-43)

The integral momentum relation for an axisymmetric boundary layer can be
written in the form

e 4 Re:. dR, —RGL[‘qu’z‘F; (1 + Herte) fcmﬂ_ (1-2-44)
Linearizing the right-hand side of the equation, we get

d Re** (1 + Herit) du'
—& +R°"“[ — @ TR R - ]

(7-2-45)
= Re, ll"m - *
Taking Hcrit = const on the first approximation, we get
- 14+ . EX
Re*®py=—= —= ® BRe,, | (F.¥
° Ulﬁu'ltp_[ ) ~~( ¥ )
(7-2-46)

. . ,
% ( ,.w)- l#(l+n)llmtRl+m( —U')::rdl-*- c | Ty

For gas flow in a nozzle, the velocity at the outer edge of the boundary layer can /140
be determined in the first approximation from a one-dimensional model. In this case
the continuity equation (7-2-43) can be written as

LI
v -y (::U"(kil)ﬁf}-"ﬁ (7-2-47)

where Fcrit is the nozzle throat area.

Moreover, for accelerated streams the shape parameter H can be determined by
formula (4-2-8). Consequently,

Re'o.._ 1 [ltm BRC.D (14m)

l+ﬂ ‘l

X (g )"' yU+mH pmerge 4 C

‘q‘M )co

1 ¥
% (7-2-48)

where D = D/Dcrit'

The local drag coefficients are found by formula (7-2-8). Using Eq. (7-2-48) it is
not difficult also to determine the velocity coefficient, which takes into account the
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effect of the boundary layer on the flow parameters in the outlet section of the nozzle,
a..
since 9 =Usy/Us=1—2 (—R—)

The ihtegral energy relation for a two-dimensional boundary layer at an imper-
meable wall in the absence of internal heat sources can be written conveniently as

dRe®*rgy | Re®*royd (ai)
T + &, aE = Re, St,. (7-2-49)

Using (2-6-4) and the invariancy of the heat transfer law under change of
boundary conditions, we have

T (%)MU(I —U’)}—l_'

} : (7-2-50)

e __ | 14+m
Re roo—Ti;{z—mrBRew

3 ey

XA‘S +M)d2 + (RC**TUOA‘. tem | I+m v

x x=x..

Accordingly, for an axisymmetric boundary layer

" 1 I+ m Y i m g 21
Re**; = 3i;D { 2Pt BRC‘°§W° (?‘:’.—) v =43
. xn

] 1 (7-2-51)
XA Dmdr + Rert, A0, DY S L

;.I .

For the case of gas flow in a supersonic nozzle with allowance for Eq. (7-2-47) we
get

_— 1 1 + m I / Bbw \™ - Jd+m
Re**,, = 5 {W BRe“I Q‘Q\:._) prmtailt ™ dx
By

. (7-2~52)

m+1

+ (Re"rmAi :L_))j?::—.} ‘

The local values of the Stanton number and the magnitude of the specific heat
fluxes are determined by the formulas

B m
=¥ ——({™\", 7-2-
St =5 Sreron (H\ : (7-2-53)
Gw = St,2,0,Ai ; (7-2-54)

\IIS is determined by formula (7-1-19) or by the approximation formula (7-1-25).
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FIG. 7.9. Distribution of pressure and Stanton number on a flat

surface in the zone of shock interaction with a turbulent boundary layer.
M, = 2.51; v, = 572 m/sec; pg = 0.11 kg - sec?/m? = 0.41 kp/cm?; 1—
incident shock; 2—boundary layer; 3—rarefaction wave; 4—shock system;
5—separation zone. Experimental points: ®—15° wedge; o —boundary

layer without shock.

FIG. 7.10. Heat flux distribution for interaction of a supersonic jet
with a flat surface. M, = 2.27 in the Mach number at the nozzle exit;
n= PC/Pa = 0.8 in the off-design factor; 1 = 1/dc =3, =90°; k =1.14.

It must be kept in mind that when compression shocks occur in a supersonic
stream, the shock has a substantial effect on the intensity of the heat transfer.

Shown in Fig. 7.9 are the results of measuring the local heat-transfer coefficients
in the zone of shock interaction with a turbulent boundary layer, done by Yu. V.
Baryshev [7]. As can be seen from this figure, the shock can increase the heat trans-
fer coefficient by a factor of 2. 5.

Analogous results are obtained for interaction of a supersonic jet with a flat sur-
face. Presented in Fig. 7.10 are the experimental results of I. K. Ermolaev and
V. A. Fadeev [27].

For the subsonic gas flow region, Ai; =CpAT, UK and Egs. (7-2-50) and
(7-2-51) change to

- I

I w m m mal
|.+mBRe“SlFm<AVi) u-oArwmdz+(Re",Ar)!;;,—l}""’ (7-2-55)

)

e
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Accordingly, for an axisymmetric flow

x 1

. x —_

-1 _Ji+m Bw \m= +mpjiém; s ATF l_+'"_]”"". - o

Re**, =515 {5 B RC-S“’Q( "5, T Dt w4 (Re** AT D)L ‘ (7-2-56)
5

For flow around a plate with a constant wall temperature and turbulent boundary /143 _
layer generation at the leading edge of the plate, we get from Eq. (7-2-49)

Re*,, = [ o B¥soRenn ] ™" (7-2-57)
L
T __m
St = M Re, T (7-2-58)
ror (542 8) 7T
When m = 0.25 and B =0. 0256
St, =0,0288 (¥ * Re__:'zpr"-', (7-2-59)

where ‘I’S is determined by formula (7-1-19) or (7-1-25).
For flow around a blunt-nosed body with a constant surface temperature we have

1

1 . Ccmy——
o = 5 P 7, S wan
]
B le»l
St = w5 2 — (7-2-61)
2P l4m C T
[ 5ppes B3 ¥ Renw]

In particular, for the case of transverse flow around a plate with m = 0. 25,
B =0.256, n= 0.75, ¢ =1.0,
St==0,037573" (Reo,yy) 2% 'Pr 2.8, (7-2-62)

Whenever the specific heat flux distribution is prescribed the energy equation can
be reduced to the form

d (Re**75 i) 1 Gyl
o = B (7-2-63)

/144

For the boundary conditions Re,’;,";o =0 atx = 0 we have
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| § Gwid2 (7-2-64)
Re*®, =St Reyy, - '
‘ws

When the heat-transfer law is conservative to the heat load distribution we get

I
-;_"'ﬂ (7-2-65)

St, =(::ts,, )T:“T (%z‘):"%r [Rem

In the case q = const and Re** = 0 at x = 0 we have

T
Re**, = StRe, (7-2-66)
and
. =
st" =Alll+l Re‘ m+) , (7_2_67)

Taking B/2 = 0. 0128 and m = 0.25, we get from Eq. (7-2-67) an equation which was
derived earlier for the case of flow around a flat plate. Thus, from the condition of
heat-transfer law conservative to a change in velocity around an immersed body it fol-
lows that for any laws of velocity variation and for a constant thermal stress the equa-
tion for a flat plate will hold if the local values of the free-stream parameters are
introduced into the Rex. It is easy to demonstrate that this conclusion can also be

applied to the more general case of an arbitrary heat-load distribution.

7.3. Conservative Properties of the Heat-Transfer Law to Changes in Wall Boundary
Conditions

In Chapter 6 it was shown that the heat-transfer law is more conservative to
changes in the longitudinal pressure gradient than the frictional drag law, and for
practical thermal boundary-layer calculations the effect of the longitudinal pressure
gradient on the heat-transfer law can be disregarded.

An analogous result is also obtained when the heat-transfer law is affected by /145
changes in the thermal conditions on the heat-transfer surface (i.e. in the laws of
variation of wall temperature or thermal stress). Given in [72] are the results of an
experimental investigation of the effect of changes in the boundary conditions on heat-
transfer laws in the case of flow around a flat plate.

A diagram of the experimental section is shown in Fig. 7.11 and the laws of
distribution of TW and q,, over the length of the plate in Fig. 7.12. The experimental

data were processed by the method of local simulation [70] in the form of the relation
Sty = f(Pe**,), where Pe** . = Re** Pr;
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fue

— qw . ® _ .
S B ey S R ' ey sy (7-3-1)
Pe“r="¢“'-

The results of processing the experimental data are presented in Fig. 7.13 as can
be seen from the graph. All the experimental points, except those of the last two
modes, fit, in general, relation (2-6-4), regardless of the form of the boundary
conditions.

FIG. 7.11. Diagram of the
experimental section for
2 7 investigation of the conser-
/T 7l - v vatism of the heat-transfer
STk bk Ak ok ik kL law to variation of the
ol e R e 3 boundary conditions: 1—
- Prandtl tube; 2—flexible
S ‘ band; 3—calorimeters; 4—
i/ i ejector for boundary layer

'

I N it suction; 5—band adjustment

VVVVV%WHQ\:’ values.

FIG. 7.13

¥

«0 mm
FIG. 7.12

FIG. 7.12. Variation in wall temperature, °C, over the length of a plate for various
boundary conditions [72]: 1—AT = const; 2—qW = const; 3—AT =b + dx; 4—qw

= q exp(kX); 5—AT =b - dgx; 6—q_ = qy Sin (rX).
FIG. 7.13. Heat-transfer law for various boundary conditions [(72]. The quantity
Sty - A is plotted on the ordinate axis: 1—A=1; 2—A =2; 0—AT = const; A-AT
= brdex; ®-q, = qo exp (k¥); + ~qq = const; X ~ AT =b - dgx; a—q, =qsin (TX).
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The integral in Eq. (7-2-49) for a given law of wall temperature variation has the

The graph reveals that the experimental points are clearly stratified as a function
of the boundary conditions and are in satisfactory agreement with the corresponding
analytical relations obtained by integrating Eq. (7-2-49) for given boundary conditions.

form, taking (2-6-4) into account,

;‘ 1
Re“,:—AIT[-%T,—) BRe,_SAT”"'dz "*”’ (7-3-2)
o
and, accordingly, for a given heat stress distribution
5 L E e
Re**, ={m Re, Wﬂ[qc,dx . (7-3-3)
1
o* Sty
- FIG. 7.14. Dependence of St, on Re for
= y oeal various boundary conditions: 1—formula
\ﬁ: T ::Tg 2 4 (7-3-4); 2—formula (7-3-5); 3—formula
% (7-3-7); 4—formula (7-3-6); 0—AT
i y o =const, A- AT =b+dX; ®—T = q
o ) . . Res exp (kx); + -q,, = const.
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From Egs. (2-6-4), (7-3-2) and (7-3-3) we get:

a) for the case AT = const

0.0288
St,= Re_(;.i—Prl),s_'
b) for the case AT = dgx
0,0338
Sty — — - ——___
L Re)2prs *
¢) for the case q, = const
0.0306
St.— Rc&")"’l;’rn'6 !

d) for the case q,, = Go eXp kx)

0,0306(kEf2 [ exp k2 )02
Sty = 0.2 pot 6—'< ’
Re,“Pr exp k2 — | }

(7-3-4)

(7-3-5)

(7-3-6)

(7-3-7
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e) for the case q,, = % sin (—:— z)

£10.2 ; 0.
moum(%} " un(l—) 02
t

)
Sty= ——s i | (7-3-8)
Rey® Pr® L l——cos(f-%-)_]
'“ﬁt,-lﬂ"
I K
yst, -
H \% u olo'" ..-. aaloaals as
x¢ E 4 v.d.’{,p. 2 aPg
213 hh o 24 "'
- ‘b} u
%, lgRe; - .
B9y 2335 5 B “ . -
|- =
Y, ] p7 )

FIG. 7.15. Heat-transfer law for the initial section of the pipe;
curve calculated by (2-6-4): the points are from [150]; A- 9,

= q, sin (%7); g - q,, = o €XP (ax); O - q_w=const.

FIG. 7.16. Distribution of the local values of the Stanton number
over the pipelength is the expiments of Hall and Price [150]. Stf -

Stanton number determined from the wall temperature gradient
and the mean mass temperature; A - q,, = do eXp (ax); x - q, = o

sin (% '); o - qW = const.

The results of an analogous processing of the experimental data of Hall and Price
[150] which were obtained for three different heat-supply laws, are given in Fig. 7.15.
The initial data for the distribution of local heat-transfer coefficients over the pipe
length are shown in Fig. 7.16. The experiments were carried out with a developed
dynamic boundary layer at the pipe inlet and with relatively small temperature drops.
In such a case the variation of the gas parameter over the pipe length can be disre-
garded and formulas (7-3-6), (7-3-7), (7-3-8) can be used. As is evident from Fig.
7.15, the experiments of Hall and Price are in good agreement with heat-transfer
law (2-6-4) for all the boundary conditions investigated.

A comparison of the experimental data with (7-3-6)-(7-3-8) is given in Fig. 7.17.
It is interesting to note that in the experiments of Hall and Price the thermal and
dynamic boundary layers did not develop simultaneously, but the computational re-
sults obtained assuming a consecutive heat-transfer law are in satisfactory agreement
with experiment. This conclusion receives further confirmation by comparing the
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FIG. 7.17. Distribution of the local values of the
Stanton number over the length of the initial sec-
tion of the pipe. 1—calculated by (7-3-6); 2—by
(7-3-8); 3—by (7-3-7); the experiments of Hall
and Price [150]: o—q, = const; A—qw = qq sin

(£7): o —q,, = gy exp @%).

results of calculating the heat transfer by the proposed method with the experiments of
Eichhorn, Eckert and Anderson [136], in which measurements were made of local heat
fluxes for flow of an air stream past a flat plate. The plate had an initial heat-insu-~
lated section of length x, and a subsequent linear variation in wall temperature over
the length:

AT=‘”TA:1 (x —x,). (7-3-9)

The heat-transfer law for the laminar boundary layer can be written as

0,22

Sy=—22 (7-3-10)
T

Then the solution of Eq. (7-2-49), taking (7-3-10) and (2-6-4) into account, can be /150
represented as follows:

a) for a laminar boundary layer

) 9w F— * ) 'x. '3 -Q.
pri13 4D . VS.VI %' (7-3-11)

b) for a turbulent boundary layer

Iw =1 18(1 8. 7-3-12
Pr'“x‘” D -0,0296 ReJ-® ) ( )

Given in Fig. 7.18 is a comparison of the experiments of [136] with formulas
(7-3-11) and (7-3-12). Also plotted in this graph are curves calculated for an isother-
mal plate. It can be deduced that in this case also the assumption of heat-transfer laws
stable to a change in the boundary conditions is fully applicable.

The results are in agreement with an analysis of the conservative properties of a
turbulent boundary layer made by V. M. Ievlev [30, 31]. According to Ievlev, the
relative error in Sty stemming from disregard of the boundary condition effect on the
heat-transfer law is defined by the inequality

ASt Re**;  4(am)
= <01 l’s‘:,'ReL T T dz

/151

(7-3-13)
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FIG. 7.18. Effect of wall temperature variation
over the plate length on heat released. a-—laminar
boundary layer: 1—calculated by the dimensionless
formula for an isothermal surface; 2—calculated
by (7-3-11); b—turbulent boundary layer: calcu-
lated by the dimensionless formula for an isother-
mal surface; 2—calculated by (7-3-12). The points
are the experiments of [136].

For the boundary conditions q,, = do €XP (kx) we get

AS exp (k) — 1
St Ot = t®
or
ASt
W‘ 0,1 Y

sincek >0, 0 <x < 1.

An analogous result is obtained also for AT =b + dyX. In this case

Re**, d@an _ b 2,55 o
St,Re, 3T  dz =0,5 l‘ - <T.{i;'b_) (7-3-14)
and .
aSt
o <0,055.

But the error in determining St, increases if the boundary conditions correspond
to a decrease in wall temperature or heat flow over the plate length. In particular,
for the case AT =b - dgx, we get

Re.'r d (_\1‘) _ ‘," b 2.5 _ B .
SLRe,aT dF — 0 [\——“—u_m ) ! (7-3-15)

and, since ( ).>1 we find ASt/St, > 0.055.

b —dx

This conclusion is supported by the experiments in Fig. 7.13. The methods of
calculating a turbulent boundary layer for similar conditions are presented in Chapter 9.
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In some cases the dynamic and thermal boundary
layer do not develop simultaneously, even when Pr =1,
6 # 6T' Let us examine flow over one plate with an

initial heat-insulated section (Fig. 7.19) of length x,

at the station x = x, heat begins to be exchanged between
the plate and the gas. The thermal boundary layer
forming in the initial section is submerged in the

FIG. 7.19. Plate with ini- dynamic layer. Setting Pr =1, p=p,, BT =0, 1T =1,
| tial heat-insulated section q=qpand 6 > 6_, we reduce Eq. (2-1-12) to the form
: _ T
(Pr = 0.72).
Jw 08
q.St=l’—dTW. (7-3—16)
On the other hand, for these conditions it follows from (1-3-6) that
Jdw Cto ~
From these equations, taking 7, ~ q, and integrating, we get
2St
1o (“’r“" W) =1 — B, (7‘3—18)
Taking (2-3-10) into account,
3\
o= ()" (7-3-19)

The dimensionless temperature difference at the boundary of the viscous sublayer,
assuming that q, is constant in this region, is

2

Ge=stPra Y - (7-3-20)
or
= pra, (7-3-21)
i Substituting this value of #,, into (7-3-18), we find that when Pr =1
B/ L (7-3-22)
€te  @r

Let us assume in the first approximation that the conservative properties of the
heat-transfer law can be used to determine Re**T. Then, for n = 1/7 and Pr = 1, by
integrating the equations

dRe**; * g,0128
e = e (7-3-23)
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dRe** _ 0,0128

d Re. - Re"o'u (7—3_24)

from x, to x in the first case and from x = 0 to x in the second and assuming in the first

approximation that 6**/6 = 6**T/6 1 We get
3 —_ (X
) Tr,k‘ x"‘) . (7-3-25)
Accordingly,
25t oh
Z.'(x:x. y ‘ (7-3-26)

Given in Fig. 7.20 is a comparison of the experimental data of Reynolds, Kays and /153
Kline [199] with (7-3-26). As can be seen from the graph, the first approximation
yields completely satisfactory results. Taking into account Eq. (7-3-26) and the
assumption Re**T = (GT/ 0) Re**, we get a correction to the heat-transfer law in the

first approximation:

0.0128 fx —x,\*** _
S =-—°;.0—25'(—x> (7-3-27)
y-. 3
e
i \ FIG. 7.20. Heat released to a plate with an initial
13 heat-insulated section. The curve was calculated
'y AL by (7-3-26); the points represent the experiments
74
AL e~ of [199].
17 ’ZT
A
Uiz w5 IsE
or
St /x—x\*"
==(% ) , (7-3-28)
where
St.— 0,0128
t'————Re;""zs .

The second approximation does not add much to the accuracy of this result.
The results of calculating the ratio St/St, by (7-3-28) are presented in Table 7. 3.

Introducing the correction into the Prandil number, it is convenient to write
(7-3-26) as

0,0288 [x —x,\*e
s.. = Reo"zPr"‘

Z (7-3-29)
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Table 3. Data of calculation by (7-3-28)

2l% 1,0 I 10 | res |10 [ s | 2 s | ®
St/St, 0 lo.al l0.87 091 093}094]095] 1.0
or
— 0,008
Nu, = 0,0288Re}?Pros ("—;"—') . (7~3-30)
where /154

Re, = ———-f" (""_ %) . Nu,= 4 x—%) - %)

Thus, for x/x, > 1.7, it can be assumed, with an error not exceeding 8%, that
Nu, = 0,0288Re3*Pre-s. (7-3-31)
But if as the characteristic dimension in Eq. (7-3-31) we take the total plate length,

the error with x/x, = 1.7 will be about 30% . For the average value of the Nusselt
number we get from (7-3-31)

- Nu, = 0037Re}"Pre-s. (7-3-32)
" v . - = Lot
Ll : (j
6 - ﬂ*‘ 2
[ '5\“ )
v )
51‘\»;
\J
2 : //(“' ‘’ FIG. 7.21. Comparison of the experimental
’ o / W . data on heat transfer to a plate with (7-3-32).
' S/ ?f“‘ The dashed lines represent calculation of the
: —7 —NFE initial laminar section.
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Formula (7-3-32) was proposed by M. A, Mikheev [74] on the basis of a generali-

zation of the experimental data on heat transfer with an advance heat-insulated section.

The results of this analysis are presented in Fig. 7.21.

7.4. Friction and Heat Transfer for Gas Flow in the Initial Section of a Cylindrical
Pipe with Impermeable Walls

In the inlet section of a pipe the boundary layer develops as in external flow past
a plate until the boundary layers, increasing on opposite walls, intersect. Therefore,
in order to calculate the processes of heat and mass transfer and of friction in the
inlet portion of a pipe we can use all the methods presented above for calculation of a
turbulent boundary layer. The difference between this "inner'" problem and outer flow
consists in the fact that the gas velocity at the outer edge of the boundary layer is not
a given parameter, but one being sought. To determine this velocity in the inner
problem, however, we have an additional relation, the equation of constant mass flow
over the length of the pipe.

‘r 9w

-z 2 - == %
P — Wy % l w. FIG. 7.22. Diagram of fluid
— =] - == ’l flow in the initial portion of
— Q; | on . . . P ~ ]
3 5” ? | l i a cylindrical pipe (Pr = 1)
T
NERLE

Xy

Consider a flow of gas in the initial section of a cylindrical pipe (Fig. 7.22). The
distribution of velocities and temperatures at the pipe inlet is taken to be uniform in
cross section. We shall assume that the dynamics and thermal turbulent boundary
layers grow simultaneously from the initial section of the pipe downstream.

The continuity equation is written as

Re

Porey =2 § 2R dR = const, (7-4-1)

where py, and wy, are the density and velocity of the gas in the initial section of the
pipe.

For a cylindrical pipe

Then the continuity equation is written as
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P = pott, (l - 2%’;—), (71-4-3)

where p, and w, are the density and velocity of the gas in the flow core at section x.

Taking into account the dependence of the gas density on the dimensionless velocity

' ;E-gu _U’)ET' (7-4-4)
we have
g¥ v, 1=V} \e=r (7-4-5)
[ ’T= 1 ~ T\ .

Introducing the shape parameter H, we get

1 'y
Re*s,, = Roue [U (1=—-Uy""" —u, 0 —0? )'_'J. (7T-4-86)

Coo
4H
where Re, ='P“%u0/&*u; Re"og = p.w.&“/p...

The momentum equation is written in the form

dRe*y | Ke*oudl
dz Udz

1
=1 B m 1
G+ H)=U@1-Uy" IX'o_z' G‘f,) R (7-4-7)

For the supersonic gas velocity region at the pipe inlet the flow will always be
divergent, but at small values of M the value of the shape parameter f will not be
greatly different from zero. As can be seen from Fig. 4.6, the shape parameter

y
: H’:sl—. (l _-!.—)Ldy (7—4"8)

We [ Po

is much less dependent on the nonisothermicity parameters than the shape parameter H.
The shape parameters H and H' are interrelated as follows:

1 AT Re**ry )
i 1_.-7:(“""“ —Ta H'r Reve
where
| ir
= _p 7-4-9
H"—"'rS (1 —8) == dy. ( )
é
Then
1 / 'w —Tw \). A
H=l—_—U—,-[uzT1.3\|_——-T" /]. (7-4-10)
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_ Rea [(1 — vy v =) uga—uy

Re**,, (7-4-11)
T'w—Tw
I
and the momentum equation is rewritten as
d Re**,, Re**,, . T%—T dU
z T Ua—mn [‘+'-3(‘—_—‘wr,. w)]?i‘
2 7-4-12)
B Bw \™ 1 k—1 (
- ¥y (»—: R U(l— U  Re,.
[, ]
Substituting Re**, from (7-4-11) into this equation, we get
t I
va—uvyt~ —u -yt IT, af; _Tw—=Tw
Pw—Tw \[ ' ( T e )
1,69 (1 i )
L LN
+U'] [u—uz)"‘ - kfl v -yt v,
3 L 1
X (1 — U2 J—[u —uy v~ —vyu, -0y (1-4-13)
. e :
= s =1 ™
x2U}U+ Wa—uvy— —u, (1 —U) (1 —Unm

T — Tw T*m
u[l.s(l———-,“ )+vr)
x[l —1.3(1 ——t—‘;—'ir—"-)] dU = 2B,

4w " _—— =
X (o) v 0~ vgras

In solving (7-4-7) we can set

Re‘.rl)\)
e H'r=Hp=Hy=13.

With a specified law of wall temperature variation and velocities and stagnation
parameters at the duct inlet, it is possible to determine the law of variation of the
dimensionless velocity U over the length of the pipe from Eq. (7-4-13). The local
values of Re**, are calculated by (7-4-6). The local values of the friction coeffi-
cients are determined by the formula

. .
¢,=1-Re.—.—,,,( b ) , (7-4-14)

where V¥ is taken from (7-1-19) or (7-1-25).
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The static pressure distribution over the length of the pipe is found from the
formula

I ] .
Py, 1-4-15

where P, is the stagnation pressure in the flow core, which remains constant in the
initial portion of the pipe.

It should be noted that the proposed calculation method is valid only for the con-
ditions of shockless entry of gas into the pipe. The thermal boundary layer is calcu-
lated analogously.

The energy equation has the form

d Rel. Re.. . . t——
T00 roo d(4i) Regol {1 _U’)b—l

dz i dz = (7-4-16)
B Pw \™
X 2 (Re** ;)™ Pr* (T,,:._) u{SQ.
The integral of Eq. (7-4-18) is

T L

1 |8 | A=)
Re“roo=—57[_(‘7m%-) Re..j va—uy :
(7-4-17)

1
wmel

ST

Substituting into (7-4-17) the dependence of U on X obtained above for a given law
of variation of Ai over x, we determine the local values of Re**T and the local values
of the Stanton number by (7-2-53). 00

It should be kept in view that all the formulas are valid only for the initial section
of the pipe. At the end of this section the boundary layers intersect, i.e. the boundary-
layer thickness becomes equal to the radius of the pipe. From Eq. (7-4-5) it follows
that the following equality should be satisfied at the end of the initial reaction:

1
Uyn(1 _Uig)r:r 3*e -1
- (,_277”) : (7-4-18) /159

U, —vH=T

where Uin is the dimensionless velocity in the core at the end of the initial section.

Substituting 6**/R, and H as functions of y* and Ay into (7-4-18) and taking rela-
tion (7-2-37) into account, we get an equation in Uin' Substituting this value of Uin into

the integral of (7-4-13), we find the length of the initial section iin'
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For the region of subsonic gas flow and constant wall temperature, a solution can
be obtained in analytic form. In this case, U2<< 1 and Eq. (7-4-13) reduces to the
form

w+|.3¢)u+m)+u]'—‘z'—,;—’— 4@, — (1 + 13Y)
7. ° (7-4-19)
X w_=23w (

RCH Peao ) (l+lq+)i

Setting m = 0.25, B = 0. 0258, taking Eq. (7-1-23) into account, we get (Wo=wy/wy,)

Q41,38 1 25+ 1] [4 (T, ~— 1)8

e e S
— 413 2= “' - (y%f ;;.';,g.vavs
Accordingly, Eq. (7-4-10) reduces to the form
H=bHy=13% (7-4-21)
and Eq. (7-4-11) to the form

Re*® — R_T_'-'- f:‘— D, (7-4-22)

The local frictional drag coefficients are defined by the formula
. ey (7-4-23)

where V¥ is calculated by (7-1-21) or (7-1-23).

The length of the initial section is determined from (7-4-18), which, for the con-
ditions under study here, is written as

isin=(x—2 ‘:;: H)_‘ (7-4-24)

or, taking (7-4-21) into account,

w;, = (1 —26 "R': \u)"'- (7-4-25)

From Egs. (7-4-20) and (7-4-25) we get the dependence of the length of the initial
section on the gas parameters at the pipe inlet and on the nonisothermicity parameter

P:
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. _Bﬁs__ [(I+H)—5—+l] 4’7(wi —l)‘;*'
2= W0,0725H* 4 n

- 1 (Bin — D** + VT (Bjn — 25 + 1 (7-4-26)

d 1

%3 . (ﬁin—l)°-’—-ﬁ(1‘iin_|)o,u+|

i — 1)0.28 Bipn — 1)12%
VT ﬁ((%?n_})._‘ ] —a+mt inw. ) }

The results of solving this system of equations are approximated quite well by the
following simple formula:

%in _ 0.8) 4 0,55

RegB ,l,o,uu ! (7 -4-27)
where
46 T \*
Reo = 300 5 o~ () -
For the case y =1
’in’ ],35 Regz"’ (7“4-28)

The question of experimental determination of the length of the initial section is as
yet insufficiently clear. Thus, in experimental work {4, 151] the length of the ini#ial
section was determined from the change in local Nusselt number and local heat-trans-
fer coefficient over the length of a pipe. The pipe cross section where these data ex-
ceeded their asymptotic values by a certain value (5% or 1%) was taken as the origin
of stabilized flow. Such a method cannot yield satisfactory results, since it does not
take into account the particular features of boundary layer interaction with the flow
core; as a result, the heat-transfer coefficient in the initial section may first decrease,
and then increase again [151]. Compiled in Table 7.4 are the results of some investi-
gations to determine the length of the initial section. From this table it can be seen
that even for a quasi-isothermal gas flow (AT — 0) great discrepancies exist between /161
the data of the various researchers.

) Jo
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@ ° . . —_— 'y - T 1 "
i | I ILJ -] o4 —— N
[ T T Ay
@ @ e ! A s = 2
FIG. 7.23. FIG. 7.24

FIG. 7.23. Effect of cooling on the length of the initial section of the
pipe. Curve calculated by (7-4-27); the points represent the experi-
ments of [67].

FIG. 7.24. Effect of the Reynolds number on the length of the initial

section. Curve calculated by (7-4-27); the points represent the
experiments of [67].
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Table 7.4. Determination of the length of the initial

section
'M Experi-
Liquid Range of Re 1, thci;' mentdl ' Source
i dons
. t i : .
Water 1.7-100—9-106 ' 10—15 4, - =const [151]
Air 2,7-108 ] 12 A, f":,:const 151
Air, CO, 5.100—2,5-10° | 1127 A, g =const, [171
)
Water 10s—100 L3020 4, -7, =const [4}3
Water 4,9.10-6,5-108 ' 14201 A, ; i 9] **
Air 3-100—4,2.10* | 16—17! 4, | | [6]***
Air 6,9-10°—2,4.10° 7, 9—-?2l A, \Tw—-LOl’lStl Author s

*Methods of determination: A] - from the change of the local
heat-transfer coefficient; A2 - from the change of the local pres-
sure gradient; A3 - from the results of comparing the stagnation
enthalpy and the velocity, as calculated for the initial and main
sections; A4 - from the change in enthalpy on the axis of the pipe.

*%The length of hydrodynamic stabilization was determined.
The data were taken from an analysis of the graph in Fig. 7 from
[189],

dkkDetermined were the lengths of thermal and hydrodynamic
stabilization.

Given in Figs. 7.23 and 7.24 is a comparison of formula (7-4-27) (for k = 0. 64)
with the experiments of A. I. Leont'ev, B. P. Mironov and A. V. Fafurin [67].
Measured in these experiments was the length of the initial thermal section; for the
case = const and Pr =1 it is equal to the length of the dynamic initial section,

The length of the thermal initial section was determined by the following method.
The energy balance equation for a pipe segment of length x can be written as

R
p.,w..i.,Ro = 2 ngR dx +S2pw1RdR (7-4-29)

For the conditions being considered here we can take 6**T = 6**, then the follow-

ing equality can be written for the main section of the pipe:

- Por Wer - (7-4-30)
s = -4-
‘ 1=-2H _3_.__

Then, taking Eqgs. (7-4-21) and (7-4-29) into account, we get

[/ —lwal—N . Ao
" =5 (7-4-31)

fo—iw

where

. E )
1 . 2:
N == R. H S= e] (‘..‘ — ‘-w) ‘ th-
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Here Qwi is the quantity of heat absorbed by the i — calorimeter; b is the mass
gas flow through the pipe.

In the initial section, i, = iy, by definition, and the condition (iy - iw)/ o-1) =1
must be fulfilled; accordingly

N =8. (7-4-32)

The experimental data were processed on a computer. The pipe cross-section for
which equality (7-4-32) was fulfilled with an accuracy of +1% was taken to be the end of
the initial thermal section. As can be seen from Figs. 7.2l and 7. 22, the proposed
calculation method is in satisfactory agreement with the experimental data. From an
analysis of the results obtained it can be deduced that the length of the initial section
increases substantially with increasing Reynolds number at the pipe inlet.

Pipe cooling has a relatively lesser effect on the length of the stabilization sec-
tion. In the 1to 0.08 range of ¥ the length of the initial section decreases by a total
of 30%.

The dependence of the parameter x Reo‘&' %5 on w, and ¥, as calculated by (7-4-20),

is shown in Fig. 7.25. The length of the initial section was determined by (7-4-27).

Given in Fig. 7.26 is a comparison of the results of calculating the mass-flow function

q(U) by (7-4-20) with the experimental data obtained from a measurement of the static
pressure distribution over the pipe length in [67]. As can be seen from the graph, ,
satisfactory agreement is observed between the proposed method of calculation and 163
experiment. From (7-4-17), taking (7-4-20) into account, we get

By — 1 1.25 + 1.62¢
_ 2— "'.——l .25
ol [4 (By— 1)%1* — V7 arctg %[:%';—.;T)).jr (7-4-33)

I g Be— D+ VT (B — 1)+ 1 o
¥Z  (B,— 1) —VZ (B, — 1)+ 1

Thus, the following relationship exists between the energy loss thickness and the
momentum loss thickness for a gas flow (Pr =~ 1) in the initial section of a pipe with
a constant wall temperature:

a.. . 1,6- -
T Lo+ n.sa,)—'—(,?,—fél)%? [4(6.— e

1 (Be— 1)*3+ VT (Bg— D2+ 1
-V e VT e 1 (7-4-34)

VE (@, — et “

—VZareg TG =y /164

Shown in Fig. 7.27 is the dependence of 5**T/5** on the parameters x Re;&- 25
and ¥.
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FIG. 7.26. Comparison of the results of calculating
the mass-flow function q(U) with the experiments of
[67]: 1—¥ =1; 2—0.6; 3—0.2; 4—0. 044.

FIG, 7.27. Effect of heat transfer on the ratio of
6**T/6** in the initial section of the pipe: 1—y=1;
2—0.6; 3—0. 044.

As can be seen from the graph, we can take Re*’"T ~ Re** in the region ¥ < 1. In

view of this fact, a convenient method can be proposed for generalizing the experi-
mental data on heat transfer in the initial section of a pipe [61].

From (7-4-16) it follows that

2
. jqwdx.

0 .
8 —
Re TOO ™  pggdi

(7-4-35)

In addition, we have the relations
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C stm— D . (7-4-36)

= T Repiydi *
.
Rep=U (1 — u-)':r Reqo; (7-4-37)
— (7-4-38)

Thus, by measuring the static pressure distribution over the pipe length, the wall

temperature, and the heat flux, the experimental dependence of St on Re"""T can be

constructed by (7-4-35)-(7-4-38). If the static pressures are not measured in the
experiments, then, taking the equality Re"""T =~ Re™* into account, the Stanton number

can be determined by the formula (for the region M << 1)

e qu AL
St~ (Rep, + 5,29 Re*™ ) tgod/ (7-4-39)

Presented in Fig. 7.28 are the results of an analysis, by this method, of the ex-
perimental data of B. S. Petukhov [85], V. L. Lel'chuk and B. V. Dedyakin [36], I. A.
Kozhinov, 8. I. Kosterin, A. I. Leont'ev and V. K. Fedorov [54]. All the data have
been reduced to thermal insulation conditions by the formula St; - St/¥«.

A mean line drawn through all the experimental points is described by the formula /165

0.014
- 0y 7-4-40
St Rey B pro.1s ( )
which coincides with the relation
St, = # (7-4-41)

for cf0/2 calculated by (1-10-3). The result confirms that the laws of heat transfer

and friction are common to the inner and outer problems of aerodynamics.

Shown in Fig. 7.29 are the results of processing, by this method, the experimental
data on heat transfer for pipes, nozzles, plates and missile nose cones. These experi-
ments cover a broad range of M and Ay . Despite the considerable scatter of the ex-
perimental points, they all fit around a line corresponding to (7-4-41).

It should be noted that in generalizing the experimental data on heat transfer in the
initial section of a pipe it is necessary to devote serious attention to the pipe inlet
conditions. The results given in Fig. 7. 28 of generalizing experimental data by the
proposed method indicate that the inlet conditions have an appreciable affect on the law
of heat transfer in the initial section of the pipe, but the method outlined below for
calculating a thermal boundary layer remains valid for these conditions also, except
that the coefficients B and m are changed [61].
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FIG. 7.28. Results of generalizing the experimental
data on heat transfer in the initial section of a cylin-
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drical pipe: 1—turbulent layer st.=————-k..o.25 505

.2 .
peseprt.3
Dedyakin and V. L. Lel'chuk {26]; A —experiments
of B. S. Petukhov [85]; Q—experiments of I. A.
Kozhinov, S. I. Kosterin, A. I. Leont'ev and V. K.
Fedorov [51]; a—experiments of A. I. Leont'ev,
B. P. Mironov and A. V. Fafurin [65].

laminar layer st,= ® —experiments of B. V.
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FIG. 7.29. Results of generalizing experimental
data on heat transfer in a turbulent boundary layer
of compressed gas. 1—turbulent conditions
st.=P——~————e..0‘T'2(;':0.5 ; 2—laminar conditions st = ———Pe::, e
experimental data: A—V. K. Fedorov (pipe); ®&—
Pappas (plate): VvV —Fischer and Noris (V-2 nose
cone); ¥—Eber (cone); ©—B. S. Petukhov (plate);
(i—Bradfield (cone); @—A. I. Leont'ev and B. P.
Mironov (pipe): & —B. S. Petukhov (pipe); +—
Fallis (plate); @—V. L. Lel'chuk and B. V.
Dedyakin (pipe); O—B. A. Sveshnikov (pipe).

The equation of a thermal boundary layer for the initial section of a pipe (M << 1) /166
can be written conveniently in the form

dpdei-.’*’pe‘. d(fi [in (1 —'&)]ust PeD’ (7_4_42)
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where
" Pe**=w3*"/a,; péD=1b'.D/a..
Taking into account Eqs. (7-4-3) and (7-4-5) we have

(2
4B | e

where
~ kn' - U..D/a..
For the case § = const

d pe“ B (Pep, + 5,2¢ Pe**)

a1 2 (Pe*m) Pro.8

t-

Taking m = 0.25, with allowances for (7-4-44) we get

. 2P - 4 Pettras Pe®
= 2 T ™ 5.2 V2 (5.24)
( Vi+i ) (». ) B
s lePe.. 0,38
. Pe**s + VI —zor— 5 ( % )
Pe "—V_(—B_zw ) * w5)
Pe pen \or '
. ﬁ DI
+ 2arctg ( /

)

duct inlet and for given wall temperature.

(i) (2)”

Nu=- 2 Prt.5Pe®%s,28 (Pep, + 5,23 Pe*?).

,, zlIn (l —¥)]= s:. ¥, (Pep, + 5.2¢Pe*),

The local values of the Nusselt number are determined by the formula

(7-4-43)

(7-4-44)

1617

(7-4-45) |

‘The local values of Pe** are calculated by (7-4-45) for given gas parameters at the

(7-4-46)

This method of calculation can also be applied to the case of flow of a dissociating
gas in the initial section of a pipe. As shown in [65], the limit frictional drag law for

a "frozen' boundary layer of a multi-component dissociating gas is obtained in the form

o= 4(VIHY +;='—l‘:—zm‘—°- ¢, =2

r‘od‘? R Pw

. ) r
! i
*i’ii.; ¢?=—‘, i¢=l5C,dT+i?.

e
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Taking the effect of finite Re*’fr into account,

(1 —2%$)) @ — VI 4452, — |1 —S(a,—ag) ¥}

X 8.2y/cF B w.

Equation (7-4-47) was obtained under the assumption that the density of the
gas can be determined by the formula.
. l— Sa,¢?

b= Sy T+ (=4, — Sy —ag) P J

2
]

It is interesting to analyze the effect of gas dissociation on the integral character-

istics of the boundary layer.

It is well known that the physical displacement thickness is related to the dis-
placement thickness in Dorodnitsyn variables by

Ry

F(1—8.2]) crb,¥) (7-4-48)

(7-4-49)

,.,,.D_J(_%_,)(l _Ri.) dy. (7-4-50)

Taking (7-4-49) into account we get

: 2 ‘
o=, [ =Byl — Ea,i? y
o j o ( 1— R—.) dy (7-4-51)
1]
and
* -1 l 2
=3 o{l—- T e W — 4~ (3 —a,), 4»?1}- (7-4-52)
| ~%ie¥;
from which we find
H=H4, (7-4-53)

where H, = 6*_/6**

. *k sk
D D’ and where 6 D ™™,

Shown in Fig. 7.30 are the results of calculating the parameters of an axi-

symmetric turbulent boundary layer under the assumption that w = §n(n =1/7) and,
using (7-4-49), for the density. As can be seen from the graph, the parameters 6*
and G*D depend greatly on the nonisothermicity and degree of dissociation of the gas,

but the shape parameter H, = 5*D/5**D remains essentially constant, equaling 1.347.

The results of calculating the shape parameter H under the same assumptions and a
comparison with (7-4-53) are given in Fig. 7,31. Clearly evident in the graph is the
influence of gas dissociation on the shape parameter H.

o
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Thus, for the boundary conditions zpa = const the shape parameter H can be

assumed to be constant over the length of the pipe. As a result, Egs. (7-4-20),

(7-4-28), (7-4-27) and (7-4-33)-(7-4-35) can be applied to the case of flow of a

on the integral characteristics of a turbulent boundary
layer. 1—5**/6**0; 2—5**/5**0; 3_6**D/6**

Dy

Hy/H, jgos 5—0%/0 ™"

FIG. 7. 31.

Effect of air dissociation on the shape
parameter H. 1—Calculation by (7-4-53); 2—by (7-4-53)
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FIG. 7.30. Effect of nonisothermicity and dissociation

; 4—

without account of dissociation; the points represent

calculation in terms of integral parameters; all calcu-

lations made for TW = 300° K.

dissociated gas, except that zpa must be substituted into all the formulas in the place
of the parameter .

For the case of a given constant thermal stress over the length of the pipe, we
have from (7-4-42)

where Ny, = qWD/)\ol Ty,

Pe** = 'lN“%o

(7-4-54)

In the range of ¥ = 0.5 to 3.0 the function ¥ can be series expanded and can be
limited to the first term; i.e. we can take

Then,
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?,=m.

Nu, - B
Pep (T—9)  Pessoiproi(l 14)°

(7-4-55)




Moreover, taking into account Egs. (7-4-3), (7-4-21) and the relation Re**
~ Re** _,, we have
T
Pep=Pep, +5,2¢Pe**. (7-4-56)

As a result, we have a system of three equatiors, (7-4-54)~(7-4-56), with three
unknowns, ¥, Pe** and Pe,.

Solving this system for the independent variable X, we get

&= 3,36 Nu;"'[Nu,Pe***.25P1¢.3_0,0286Pe 5, —0, 1 49Pe**

(7-4-57)
—)/ (0.0286Pe , + 0, 149Pe™* — Nu,Pe**Pro.%)7 +1,190Nu,Pe* *L53pre ).
Knowing the local values of Pe**, we define from (7-4-54)
b=l4pon e, (7-4-58)

This method of calculating can also be applied to the case of an arbitrary law of
thermal stress distribution. In this case it is necessary to use (7-4-42) instead of
(7-4-54).

There exists, in principle, no impediment to also applying this method of turbulent
boundary-layer calculation in the initial section of a pipe to ducts with cross-sectional
area varying with length. The only difference is that in this case we get from the

| continuity equation not (7-4-6) but

f Re**y = ﬁ—;,'—‘ [U (1 — Uy —u, (1—U,)=T (%‘) 'J. (7-4-59)

where Ry, and R, are the radii of the inlet and current cross section of the duct.

Hence, the momentum and energy equations must be written in the form of
(7-2-45) and (7-2-51). The subsequent deductions remain the same as for a cylindri-
cal duct,

7.5. Friction and Heat Transfer with a Stabilized Gas Flow in a Cylindrical Pipe
with Impermeable Walls

Stabilized flow sets in after merging of the boundary layers that arise in the initial
section of a pipe; typical of such a flow for isothermal conditions is self-similar dis-
tribution of all the parameters over the pipe length. For a stabilized isothermal turbu-
lent flow of incompressible fluid the velocity distribution over the radius of the pipe is
described rather well by (1-10-2). The reason for this is that flow in the pipe is con-
vergent with a comparatively small value of the shape parameter f. The pressure drop
in the pipe is determined by the formula

135

/17

0



where the mean gas velocity is

where

| Re
- S ®RdR. (7-5-2)
Substituting velocity profile (1-10-2), we find
@m0, (l.75+2.5ln "°‘:R'). (7-5-3)
..w = 0 -g_'

From this we get the drag law

7‘=€-=-0.88(ln Rep VT —0.8. (7-5-4)

In the region 5-10*<Rep<10® satisfactory results are obtained by the Blasius formula

0,316

t'— R—egg'. (7-5-5)

where Rep,=uD/v.

A power-law velocity distribution with n = 1/7 corresponds to (7-5-5).

Let us determine the shape parameter f for a stabilized flow of incompressible

fluid in a pipe:

& dP 3°* ¢
== @& T2 (7-5-6)
In the stabilized flow region 6 = R, and -dP/dx = 27_/R,.
Hence,
".. B
”Tﬂ- (7-5-7)
When n = 1/7
0,0308
= Re" (7-5-8)

that is, f < 0.003 when Re > 104 and f < 0.002 when Rey > 105,

and heat transfer for a stabilized flow of incompressible fluid in a pipe can be neglected.
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Heat transfer in the region of stabilized gas flow in a pipe with Re_ > 104,

0.5 < Pr < 1.5, is determined by the formula D
Nuy = 0.023Re%%Pre.s, (7-5-9)
where
Re
Nup=aD'k; a = G /(T — T, T= %‘- S pcTRdR; Rep, = 4G/=Dp.

[

In the presence of heat transfer, a stabilized or self-similar gas flow does not set
in, strictly speaking, in the general case. The coefficients of friction and heat trans-
fer can change over the length of the pipe even after the boundary layers have merged.
Therefore, by a "stabilized'" gas flow in a pipe we mean the gas flow downstream from
the section where both the dynamic and the thermal boundary layers have merged.

The limit laws of frictional drag and heat transfer can also be applied to stabilized
gas flow in a pipe, except that then the gas parameters on the axis of the pipe will
correspond to the gas parameters at the outer edge of the boundary layer.

Consequently,

w
2
Py

T w Y = W, (7-5-10)
<P':3>' Re™ow

where p), w; are the gas density and velocity on the axis of the pipe; and Re**

oW
= powoﬁ**/uw is the Reynolds number over the momentum loss thickness.
/172
From (7-5-10), taking into account (1-11-2), we have
Gw B -5
TR Yo (7-5-11)

In processing experimental data on friction and heat transfer for a stabilized gas
flow in a pipe it is customary to introduce average parameters, which for the gas flow
are defined by the following relations:

Ry

T=%JprRdR, (7-5-12)
SR 7-5-13
= e Rg S‘u . (7-5-13)

We introduce the dimensionless parameters
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(.=5% RdF; (7-5-14)

b= (1o ) mams (7-5-15)
]

1

Ia=-5%}!dk. (7-5-16)
where
Ra—R—'.
Then

-
f':;.—= 2f,: (7-5-17)
%=2f.; (7-5-18)

“‘
F.—= ’,. (7"5'19)

Taking (7-5-17), (7-5-18) and (7-5-19) into account, Eq. (7-5-11) can be written in
the form

BY, /
w e (7-5-20)

2™ (Rey)™

where Re = = pwwD/uw.

It can be assumed in the first approximation that non-isothermicity does not have /173
much effect on the velocity profile. Thus, for an ideal gas, taking a power-law dis-
tribution of velocities and temperatures over the boundary-layer cross section
(n = 1/7), it is possible to obtain the following formulas for the functions f;, f; and f;
from (7-5-14)-(7-5-16):

frm0.408¢ -2162, [;=0,074¢-0718, [3=0408, (7-5-21)
where ¢ = Tw/To-

Taking these relations into account, we get from (7-5-20) (for m = 0.25, B/2
= (. 0128),

tw _ 0,00316 (;'.‘")c_u'
T e, o e (7-5-22)




Consequently,

< ) [/ 2 ?
- Y = — . -5
(Cl. Ww @ \V;—l) (7 9 23)
The following relationship exists between the temperature factors ¢ ZTE and
T 0
=W,
=5
+= $;~' =7 (7-5-24)
4
Then,
g ) _ 2 :
(E!u Ew ( 3’.‘+l ) ’ (7—5-25)

From the Reynolds analogy it follows that
e, (), (e
St, R_ew €re /ﬁw ) ‘b_"-(.- 1 (7_5'26)

Going onto the Nusselt number and the gas parameters at wall temperature, taking
(2-6-4) into account, we get

e oam 2\
Nu,, = 0,023Re. Prl.'} (?'—h{l—l) (7-5-27)
or, if we take w_=$70:6,
Nuy, = 0,023Re0,'Prl {Jome. (7-5-28)

It is interesting to note that in this case the effect of the temperature factor on the
magnitude of the Nusselt number is less noticeable than on the friction coefficient and
is opposite in sign.

If all the gas parameters occurring in the Reynolds and Nusselt numbers are de-
fined with respect to average temperature, we get
Nu = 0.023Re*.sPre.s G- 07, (7-5-29)
where

Nu=aD/X, Re =T aDjm; A/k = py /it = 078,
Pr=pCp/K (Ty—T)/(Tw—T)=1.

The experimental heat-transfer data given in Fig. 7. 32 are from the work of
Perkins and Worsoe-Schmidt [194], V. L. Let'chuk and B. V. Delyakin [26] and
McEligot [177]; they give a stronger dependence of the Nusselt number on
non-isothermicity:

Na = 0, 023%ee./Pro.s oo, (7-5-30)
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FIG. 7.32. Effect of noniso-
thermicity on the heat-trans-
fer coefficient for a stabilized
gas flow in a cylindrical pipe.
The straight line was calcu-
lated taking (7-5-30) into ac-
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The discrepancy between the experiment
be explained by the fact that the experiments were

5 105 Re

perature and thermal stress over the length of the pipe, leading to infraction of the
Reynolds analogy between the friction and heat transfer.

Using the hypothesis of heat-transfer law conservative to change in the boundary
conditions, a method can be proposed for calculating the thermal boundary layer in a
long cylindrical duct for an arbitrary law of thermal stress distribution over the

length of the pipe.
accuracy

where y_= TW/TOX

In the range of ¢ from 1 to

It can be shown that when

where
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wm = ‘&;-0.5' (7-5
Ty
;:_:- - (T._/T.l)"‘
Rep,fs (4,)
(7-5

Re**r=""7T_nm
4 (‘f:'.") h (4a)

pw
PeWWe

s (ba) =S (1

pw
’l (")zsm—.

(- 4)e(2)

2l and calculated data on heat transfer can
carried out with variable wall tem-

5 we can take with a sufficient level of
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Taking into account (7-5-32) and (2-6-1), we have

0,5 B.4mp I—R‘R 1—m t4+nm
“ l-= l—:(:l - eDl (71..0- ) (7_5_33)
- — 2f, f, Nu, "
From the heat balance equation we find
2
4\ gwdx
Tor _ h | (S " (7-5-34)
Ton fl + Rep,Prg, A, Ty, !
where
t
= Y LA
’l=§w- (l— R.)d(R.)
Taking Eq. (7-5-33) into account we have
’ 1
3 4\ g, dx T+mm
3% B.gmpryTRel ™ T U S v (7-5~35)
*,—l Zf"' ];*’"""Nu, b+ Rep ProhaTa
In the general case the function f;, f, and f; depend on the nonisothermicity of the /176

stream; the nonisothermicity shows up directly in the temperature factor d)x and in-

directly in the deformation of the velocity and temperature profiles. It was shown

earlier that the velocity profile is slightly deformed by ?onlsothermicity, and in the
first approximation, therefore, we can take w = wy = f Then, assuming like
velocity and temperature distributions, we get

=0.4037%'%; f, =0.07447%%%; f, = 0,408. (7-5-36)

fitm | 0,065
Th) e~

that is, the combination of these parameters is essentially independent of the tempera-
ture factor.

When m = 0.25 and n; = 0.75

Then, solving (7-5-35) for dx’ we get
b4 5o (1 + VT, (7-5-37)

where
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x

! 4 S gy dx
_—_————0 s

m m(i+m) I+ Rep, ProherTa

4
€ =v—~ BRe"MPrl-Mm—
2 il ot [ f;+n.m Nu,

Tusing (7-5-34) into account, we have

x
4\ gydx
Tw _ I (7-5-38)

. 1 S R .
) fs l_l +_2_CT(I + Vl + 4 )] I+ Remp"u}\urn

rording to the work of P. N. Romanenko and N. V. Krylova [99], B/2 = 0.0075
and : = 0.2 for the stabilized gas flow region in a pipe. Takingn; =n, = 0.75, we get

x
4§ Gy dx
Tw = T.l I+ ReDlpr")‘“T“ )

1 640q,, 2

X[+ s 23
; gw dx .
Pr;®Re I, T2, (l +»4f——————p,“R§'mx"T“ ) (7-5-39)
0

_ . \o.u /177

x .
A 4Sqwdx
07 Reyy . 3 _

X Ll + #20 Nu? '+ RepiProkelm ‘

Given in Fig. 7.33 is a comparison of the results of a calculation by (7-5-39) with
the experiments of V. L. Lel'chuk and B. V. Dedyakin [26]. The dashed line shows
the calculation of the wall temperature in the initial section by the method outlined
above, taking into account the effect of inlet conditions, according to the work of A. I.
Leont'ev, and V. K. Fedorov [61].

L)

W I L-‘E" FIG. 7.33. Comparison of the results of wall-
i P ’_1 temperature calculation with the experiments
A L of V. L. Lel'chuk and B. V. Dedyakin [26].
P AN 2 The solid curves represent calculation by

(7-5-39); the broken line curves by formulas
for the initial section [61]: 1—experiment No.
35; 2—No. 25; 3—No. 12 [26].

Given in Fig. 7.34 is a comparison of the results of wall temperature calculation
by (7-5-39) with the experiments of B. S. Petukhov, V. V. Kirillov, Tsu Tzu-Hsiang
and B. N. Maidanik [87]. The experiments were carried out with a considerable
variation in thermal stress over the length of the duct (in experiment 13-1II, for
example, by a factor of 6). As is evident from the graphs, the proposed computational

142




s\ L, X —
e |
e 7 L
d ! FIG. 7.34. Comparison of the results of wall-
— i temperature calculation with the experiments
20! : of B. S. Petukhov et al. [87]. The curves
. were calculated by (7-5-39): 1— experiment

535 = T 13-II; 2—6-VIII; 3—10-V.
nw-n%'* - TZil—;‘“—‘—*

ool L i enms el SN
RO Fg—FF 7
S S~

000 y ey
a:

T 30 & 50 60 70 80 57 =0

method yields satisfactory results and takes correct account of the influence of both
the thermal stress distribution and the thermal factor on the intensity of heat transfer
of the gas in a pipe in the "stabilized'" flow region. The method proposed by Ya. M.
Visel [8] is applied to the case of the diffusion problem (condensation of vapor from a
vapor-gas mixture).

7.6. Turbulent Boundary Layer of Gas in the Duct of an MHD Generator /178

In view of the relatively short lengths of seal MHD generator ducts (L/D =~ 20) and
of the high Reynolds numbers (ReL/L up to 10 m~!), the boundary layers, which in-

crease at the duct walls, do not intersect, as a rule, and the methods of turbulent
boundary-layer calculation outlined in Chapter 7 for the initial section of a duct can be
applied to these conditions.

A distinctive feature of an MHD boundary layer in the initial section of a duct is
the fact that the unperturbed flow outside the boundary layer is also conductive, and
therefore the flow core and the boundary layers are interconnected both electrically
and gasdynamically.

In the absence of electric and magnetic fields the static pressure and longitudinal
velocity in the flow core are uniquely related by the Bernoulli equation.

In an MHD generator it is necessary to distinguish between boundary layers at the
electrode and insulator walls. The insulator wall is usually cooled, and only the outer
portion of the boundary layer is electrically conductive and is subjected to the effect of
volumetric forces. On the other hand, the temperature of the electrodes is close to
that of the gas. The current induced by the flow core flows through the boundary layer,
increasing at the electrode walls. The Lorenz force acting on the inner strata of the
boundary layer will decelerate the gas and can bring about boundary layer separation
from the wall of the electrode.

In ducts with appreciable longitudinal currents, e.g. Hall generators, there are
appreciable transverse pressure gradients; as a result, gas flows arise along the
insulator walls from one electrode to the other greatly complicating the flow pattern.
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It should be kept in mind that the theory developed for a plane flow of conducting
gas in transverse magnetic and electric fields cannot be applied directly to an axisym-
metric flow, since circular symmetry is not preserved in the presence of a magnetic
field.

The presence of additional terms in the energy equation, stemming from Joule
heat generation, also complicates the problem appreciably. Therefore, the results
presented below were obtained with certain assumptions and are estimative in nature. /179

The following hypotheses were adopted:

1. Considered is a plasma flow in the range of low magnetic Reynolds numbers
and Hall parameters. These are the conditions that usually obtain during flow in the
ducts of MHD generators.

9. Fluctuations of the electric and magnetic quantities and also the direct effect
of the magnetic field on the turbulent pulsations are neglected. Some justification for
this approximation, called the gasdynamic approximation, can be found in the papers
of V. P. Panchenko [17]. Obviously, this hypothesis will be justified if the Joule heat-
ing and the ponderomotive force (in the layer at the insulator wall) are small compared
to the heat flux and friction at the wall. At short distances from the electrode and low
wall temperatures this hypothesis is not fulfilled, since then diffusion processes,

Joule heating and other effects become significant.

3. The longitudinal electric field equals zero. The influence of end and near-
electrode effects, which lead to the appearance of a longitudinal magnetic field, is
disregarded.

The integral momentum and energy relations for these conditions are written as
[see (1-2-1), (1-2-13), (2-4-9), (2-4-13)]

a) for the insulator wall

dRe** s B‘Ig X 7-6-
—z— tRe, A+ H)[+Re —P—.;—g—ﬂj—_:ReL—fz—’; (7-6-1)
d R e
___:§£+Re"1: [ == Re,St.. (7-6-2)
where
1 d(diy) 1 di* .
fn= ai;, dz LR (H — Hy);
‘(
i
S (l —‘7.—)«1:
o L)
”’= 8“‘ »
b) for the electrode wall /180
d ”"»»
LR +Re (I +-H)[=Re, L (7-6-3)
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d Re..i
_ dz =+ Re™ [ = Re, St,. (7-6-4)

where

1 d(diy) 1 di*, .
=5tz H—H

. E
(+-m)e

[
3 it

Ol ey e

Hp=

Thus, the momentum equation for the turbulent boundary layer at the electrode
wall retains the same form it had for nonconducting fluid, except that the velocity gra-

dient in the flow core appearing in the shape parameter f must be defined by the for-
mula

dw,

dp .
PoWe — 1 = ~ax +iy8:. (7-6-5)

Consequently, with the gasdynamic approximation we have adopted, the dynamic
turbulent boundary layer at the electrode walls is calculated by the formulas of
Chapter 6. i

Important for supersonic MHD generators is the question of the stability of the
turbulent boundary layers at the electrode walls. If the reserve of kinetic energy in
the boundary layer when the flow core is decelerated proves to be inadequate to over-
come the friction, pressure and ponderomotive forces, boundary-layer separation
from the wall occurs and a system of compression shock arises.

The section of boundary layer separation from the electrode wall is determined by
the formulas of Chapter 6 with allowance for the effect of non-isothermicity and com-
pressibility on the frictional drag law and the critical separation parameters.

After linearizing the integral momentum relation (7-2-6) we get

dRe**,, Re**,, dir,
IR Heme) B0 S0 (1-6-6)
[ ww \™ B o
=‘F,W’“ K:‘-) ReL 2(Re“..)"‘ '
After integration we get /181
*% l B Y
Re 0e = exp(—— l_-f-”T) (m4+1) ‘Z—Reoo f(wlw‘u)
x, (7-6-7)

X ( bw )"’U(l ——U’)tl'—exp ()de + ¢ Jﬁ

oo

Pt
o
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For the shape parameter Hcri ¢ we have the expression

Herie=2.419* +1,38A¢—0,52. (7-6-8)

The local values of the friction coefficients are determined by the formula

B m
o= T o) (1-6-9

where ¥, ¥, and ¥; are determined by (7-1-19) and (6-2-14).

The shape parameter f is defined by the relation

Re®% au
f= T (7-6-10)
Ren Ut (1 —UD* !

The parameter fcrit is calculated by (6-4-6), (6-4-7) and (6-4-12) or by the graphs

in Figs. 6.10 and 6.13. In the section where the shape parameter f reaches the value

fCri ¢ the turbulent boundary layer separates from the wall.

To solve the integral energy relations it is necessary to know the value of the
electromagnetic shape parameters Hp and Hj'

D. 'N. Vasil'ev {19] has made an estimate of these parameters, using as a basis a
power-law approximation of the velocity distribution and stagnation temperatures over
the boundary-layer cross section.

Taking
w=0=;" (7-6-11)
with allowance for (2-3-8) we have
i »
T.-=[¢+(1a'—-q;)e-—-(qa — 1)) (7-6-12)
Ohm's law is written in the form /182
E=Bw— - (7-6-13)
9%
and for the flow core it is written as
E,=Bw.,——"—. (7-6-14)

Estimates will be made only for the thermal conductivity, when o=a(P, T)
We take

=AY ()
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In the boundary layer P = const and it can be assumed that

LI (L)" (7-6-16)

Gy Ty

Taking Egs. (7-6-12), (7-6-13) and (7-6-16) into account, we have

Hy= 2T "§ P {ly+ G — e
(7-6-17)

— @ 1) B e — k) J dt

(n+ 1)(2n g —k\ pn
= n+ z+l§'[ (1 k)P o -

H@ —NE— G e e — ) | &

H,=

2
9[”‘ He.
40 0t
Jor b4 Joy
P\ 2 2 3

4
/) 4 ¥/
7 W og T
Y s (oo 260 X0
.”r =10 L
9 9

FIG. 7.35. Dependence of the electromagnetic shape
parameters H]. and HE on the non-isothermicity and

load factor k. Calculations were made for T,
= 3,000 °Kand M, = 2.5. a,¢c—n =1/7;b,d—n
= 1/10;1—k=0. 1;2—k=0. 3; 3—k = 0. 5; 4—k = 0. 7;
5—k=0.9
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From Egs. (7-6-17) and (7-6-18) it follows that the shape parameters Hj and HE

depend on the three variables ¢, ¢™ and k, where k = E;/Bw, is the load factor.

The results of numerical calculation of the parameters Hj and HE by (7-6~17) and

(7-6-18) for My=2.5 I =1.6), Ty = 3,000 °K and various values of n and k are
given in Fig. 7.35.

From the graphs it can be seen that the exponent n has a considerable influence on
the shape parameters Hi and HE at wall temperatures below 1,500 °K (¢ < 0.5). HE

and Hi decrease with increasing temperature and can become negative at certain /183

values of 4. Knowing the value of the shape parameters HE

mine the drop in potential and overflow current at the duct walls

and Hj’ it is easy to deter-

A(pnc=6_~,"‘Hp:; A.I’—"O"”Hj, (7—6—19)

where 6e ** and 6in** are the momentum loss thickness at the electrode and insulator

1
walls, respectively.

7.7. Examples of Calculation of a Turbulent Boundary Layer on an Impermeable /184
Surface

Example 1. Calculate the friction and heat transfer on the surface of a cone in an
air stream with parameters corresponding to an altitude of 10,000 m (P = 198.2 mm
Hg, t =50 °C) for M = 6. The cone apex angle is 2w = 20°. The surface temperature
is 600 °C.

The gas parameters behind the shock are determined from the diagram in the book
of Yu. A. Kibardin, S. A. Kuznetsov and B. Ya. Shumyatskiy [39]. The angle of
shock inclination to the axis of the cone is g, =147, Wo/Wey = 0. 9755 po/poy = 25

TO/TOO =1.37; My = 4. 97. The gas parameters along the surface of the cone are taken

to be constant. Then we get w, = 1,750 m/sec; p, = 0. 084 kg - sec?/m*; Ty = 306 °K;
u, =4.05- 1076 kg - sec/m? u, =1.93 - 10-% kg + sec/m?.

Very important for these conditions is the question of determining the laminar to
turbulent boindary layer transition. The existing theoretical investigations of the loss /185
of boundary layer stability, based on the method of small perturbations, can yield only ~——
qualitative results.

The limits of laminar-to-turbulent transition on the basis of existing experimental
data are given in Table 7. 5.

The results of calculating the complete stability of the boundary layer and a com-~
parison of experimental data on laminar-to-turbulent boundary layer transitions on the
surface of a cone with the results of calculation by van Driest [132] are given in Fig.
7.36.
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e, 0
4
i FIG. 7.36. Influence of cooling on the
’ Reynolds transition number on a cone
2 with a2 10° angle. A, B, C—boundaries
N 3 of complete stability; 1—M = 1.9, Re,
d X =2,13 - 107; 2—M = 2.7, Re, = 2. 64
AN A * 107; 3—M = 3.65, Rey = 1. 97 + 107
¢ 7\__L . 4—thermally insulated surface; o, 2,
4 Te 0 —van Driest's experiments [132].
2
A # e
LN y
1 8 22 2 I i I8

From this figure it follows that under the conditions considered in the example
cone cooling does not ensure complete stabilization of the laminar boundary layer.
The boundary of comglete stability for M, = 4.97 corresponds to ¢y = 2.7. In our case
P* = T,/To = 2.85; 9" =T /T, =5.15;

2 /186
e~ 0.3, —

l+r2M3

According to the data of van Driest and Boison (see Table 7.5) cooling of the cone
surface to values of

>

b
x

h"‘l 9
V4 7 it

increases Re ., by a factor of about 2.
X crit
According to the experiments of Laufer et al. [132], ReX orit ™ 3 - 10° for a heat-
insulated cone. Then, for a cooled cone under the conditions being examined we find

Rex crit &6 10® and x crjt =008 m.

The friction and heat transfer in the laminar boundary layer were calculated using
the integral momentum and energy relations.

The frictional drag and heat-transfer laws for a laminar boundary layer can be
represented as [43]

7] 0,22

T Ret.

$- 021 (%) -0 (7—7—1)

that is,

\yl = ,p-o,zz(,p.) —0.00'

149



Table 7.5. Critical values of the Reynolds

Cone
Author Source angle M
deg
fer, Mart 132 5 1,79
Laufer, Marte (132} 2'55
4,5
Lange, Giseler, Lee J. Aeronaut. Sci., 1953, 5 1,9—4,2
vol. 20, Ne 12, p. 718
Van Driest J. Aeronaut, Sci., 1957, 10 1,9
N 12 10 2,7
10 3.65
10 1,9-3,65
Ross, Sincolair, NACA TN 3020, TN 3648 | 10 1,4—2,01
Czarnecki
Scherrer NACA TR 1055, 1951 20 1,5—2,0
1,5—2,0
Van Driest, Boison J. Aeronaut. Sci., 1955, 20
vol. 22, p. 455
Gazlay J. Aeronaut. Sci., 1953, 20 4,2
vol. 20, Ne |
Sack, Dfiaconls NACA TR 1055, 1951 3,12
For the case T = const /187
(¥ l iy g
S‘;:ll‘l'—z— TR (7 7 2)
The momentum equation for flow around a cone has the form
dRe*® Re** ¢ -7-
az z R (7=7-3)
where Re; =w,L /v and cg/2 is the local friction coefficient.
Taking into account Eq. (7-6-1) we have
0,664
Re*® = V] ~oot VReL (7-7-4)
V3
(7] 0,574 -
— B —— . 7—7_
2 V_Rc' le * ( 5)
0.574 Vgy
St = —_— Ly
VRe, P23 (7=7-6)
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number for supersonic flow around a core

v . B
Recrit L} ': . % l+‘—;l_ . l Comments
(4,3—3,3)-10¢ 0,6—6 The influence of
3.10¢ 0,6—6 flow turbulance not
2,7-10¢ 0,6—6 discussed
(3.4—1)-10¢
(12—5)-.10¢ 1,4—1,65
(l2—4) 108 1,5-2,3
(8—3.5)-10¢ 1,8—-3,4
(6—3,5)-10¢ 0
7-—-8)- The influence of
(7—8)-10¢ 0 the Mach number
not evident
4,1 10¢ 0 Change in Recrit
3-100 0,14 due to variation of
Reg
(2,7—5,4)-10¢ 0—(—0.38)
4,5.100
(3—0,85)-10¢ 20,.2— (40.5)

In the laminar-to-turbulent boundary layer transition region we have

0,664

Re**cpit = Vi === V%, V Re, qit= 0.383-2,85-%.1.0,515~

X V6-108 __788

and

R . E -
Re*Zrie w = Re'crit oy 700;

. Re**
Rercrit = i3 =00 Rer crit w= 830 (7-7-7)
1L,ISV®; 1,15(1, |9) -1
P, __3' ,lo-c- 7
€4 crit VRexcrit Vo 94 (7-7-8)

The local frictional drag coefficient is

L1sp-eiye-es  1,105.10-¢
Cp= - x )

V %;’.x Vx (7-7-9)
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The local heat-transfer coefficient is

€y 86.7

&=~ Y Wy =
2 prai3  T%r P b

. (7-7-10)

x

For a turbulent boundary layer it is convenient to defir’lg‘ the Reynolds number in
terms of the viscosity with respect to wall temperature Rew = (pOWOG**)/uw-

Considering the equality of the momentum loss thickness at the point of transition /190

from a laminar to a turbulent layer, the integral of the momentum equation for a tur-
bulent boundary layer is written as

1

Re**y = | Remy — | ReZAT
v Reow
. , (7-7-11)
_Re,Re"L:"' T
e L .
Hence, for the local friction drag coefficient we have
- 1
i
¢=%BC " (Res ~ ReTTL [Re§T"
A (7-7-12)
R et e ]}-m
C ’

where

T 14+m
c= [—ﬁm)— B¥e J
For the heat transfer we get

T TEm
B C 1
St=®,  —-—557-57= | Re. — _____../Re2+m
20 2 (Pre.135)i+m [ Re‘l'+m \ x1 (7-7-13)
m
RCLT”’ Re.‘;'rmpr._-u )]- m+l
— z _

The results of turbulent boundary-layer calculations by formulas (7-6-12) and
(7-6-13) are compiled in Table 7. 6.

Given in Fig. 7. 37 are the results of calculating the frictional-drag and heat-
transfer coefficients for the conditions being examined. /191

Example 2. For the conditions of the Viking~10 [35] rocket, calculate the heat
transfer on the surface of the rocket cone of angle 2w = 25° at a distance of 0.66 m
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Table 7.6. Table for calculation of example 1

No. of the

formula Formulas and calculation Comments
in the text
] 2 (¢ — 1) 4 Ad
Ce= W =15— [au’csln Z — The limit frictional drag
(#-1-2) ¢ ST -1 Vas —1) (0% £ 8 + a8 and heat-transfer law is
Ad ) ! the same for coves and
McsmV‘t(sb‘—l)(¢'+A¢)+A¢2 j S5 -1 X | plates
Xi' res 2(5,15—1)—2,3 _
A Y T v Y Y
—2,3 2
—_— = =0.3l M
Bl T o s T ] !
n:—i—; m=0,25 B=0,0232;
— P, A—! 2
Tu=T, (z-uk2 MO)_306/|+ 5 ‘4.97=) = 1820 °K.
m l+m 5 \i4m | =
(7-2-12) ¢1=W,BC T* 7| Rey— —— [ Re2t™ — Rex” Re™) T+ mam | *17 Xcrie =0-08; Retky
1 t L Re! Reltm [ from calculation of a lam-
inar boundary layer
m
1+m “mrd | @ 1
= Wb [f(z—:nr) B“‘*] By * T (w.o. )m.x
T X
Fw
(woPo x >l+ Re..l+ﬂl T+m
% WepoX, \ 1+m pw_ ! -
Fw i LT
2(2 +m) ¢
0,823.10-¢
n(x__g'g.[o—lx-l_u)o,a
EELBWREE -
2. 2( S| m+ *k_ = Redok
(7-2-53) St—‘l’s—g- 2@ +m ik Wety Rexfpp=Redx .
Pro. By from calculation of a

’ l+m
(wopo x‘>

1 Wedo 2+m
- Webe l+m ( \\ 1 +m X
(7‘7 ‘) T@+m 8
m
(Re**y))t+mprers | "o 0,575-10-
X [ = G=2.8 10z T
-
a-swpx.w.—(x_Q%SZg 1,2 T7j53 0,24:0,084.9,81 17703 600 m
716

S =810

laminar boundary layer
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Table 7.7. Initial data for example 2

v, sec{ H, m m./,;ec : mn?'hg To. °K !p.. kg-sec/ma‘ M, tw °c
|
60 | 13200 | 455 I 119,8 [216,5 | 2,62-10-2 | 1,64 24
70| 19000 640 | 48 216,5 | 1,05.10-% | 2,23 52
76 22500 300 | 27,6 (216,51} 0,605-10-3} 2,7 80
80 | 26500 | 925 ! 14 216,51 0,307-10-2] 3,12 | 11,5
85 | 32200 | 1100 | 7,2 (216,51 0,157-10-*| 3,72 138
kecal{m2hr« deg)
?wa
o 1
' | g
..‘fﬂ‘ml . .
“ \ FIG. 7.37. Results of calculating frictional
2} aw ™S 2 drag and heat transfer on a 10° cone for M,
w \Y - =6.0. 1-—a; 2—c,.
8t 0
4 aml\
é 200
P4
ot -

T e 93 g5 @5

from the cone apex and behind a turbulence generator at this same station. The initial
data for the calculation are given in Table 7.7.

According to the data of Table 7.5 it follows that the boundary layer at the point of
calculation should remain laminar in the flight time under study. A turbulence genera-
tor mounted just ahead of the calculation cross section (x = x; = 0. 64) should make the
laminar boundary layer turbulent.

We shall assume that the boundary layer downstream of the turbulence generator
has become completely turbulent and that the values of Re** just before and just behind
the turbulence generator are the same. The calculation is performed by the method
outlined above. The calculation results are given in Table 7.8 and in Fig. 7.38.

kcal(mzhr *deg)
280

20
FIG. 7.38. Comparison of the results of calculating
example 2 with the experimental data of Snodgrass
[222): 1—laminar boundary layer; 2—turbulent
boundary layer; a —experimental values of & behind
a turbulence generator; @ —value of & for a laminar
boundary layer.

200

680

20|
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Table 7.8. Table for calculation of example 2

i

H <, secC
i i 4 | {
Formulas and Calculations i & , - : s | % ‘ o
Laminar Boundary Layer
074 /' ¥s ' ' ; |
Stom 2l L 7S ! 0,000288 | 0,000372 | 0,000416 | 0,00053% | 0,0065
3,2 : i l
yRc‘ Pr 1 : | .
i i | !
s =5tCpg Tote- 3 60C, kcal/(m2 hr-deg) ' 3¢, ! 27,2 ‘ 23,7 ; 21,2 ! 16,8
0,353 ' : l i
Resop; = Re**,/Pri/2 = P o —0.1145°—0,04 Y Re_ bt boss o2 L0 452
r :
! { | b
Turbulent Boundary Layer
Ty= oy fercatn —__EWIZU S boosy | oor | o 0,694 0,585
=1 ] Y =11 (9° + a9) + Ay : ' :
A 1 ! !
-—arcsin i i | i
Vi{gr—1) (4% + 89} ~ 8¢ ! i .
l+m - § i ;
v, B8 _C T Tpe ol [Re2tm ' 0,00224
=S 5 pomsyEm | M jlem (Rex! l 0.002¢ | 0,0029 | 000228 | 0,00228 | 0,00304
) ] o |
m !
Rel +MRe®l +mp0.78\ 1 T+m l |
xl 2‘ )J i m=0,25 8=0C,0282 M e 12 81,5 9,3
!
s = St Cpo1.w.-3600,kca1/(m2 hr-deg) l |
i

Example 3. Calculate the distribution of specific heat load over the length of the
nozzle of a liquid-fuel rocket engine. The initial data for the calculation are as fol-

lows:

pressure in the precombustion chamber: P =6, 8, 14 kp/cm?;

characteristic velocity: 1617,1653 m/sec;
nozzle wall temperature: 478 °K
recovery factor: r = 0. 9;

propellant: hydrazine (N,H,) and nitrogen tetroxide N,0O, in the ratio 1:1;

adiabatic index: k =1.22;

gas constant of the combustion products: R = 44.49.
The geometrical dimensions of the nozzle are shown in Figs. 7.39 and 7. 40.

The combustion products of hydrazine in nitrogen tetroxide consist of a mixture of

nitrogen, hydrogen and water vapor. The weight concentrations of these gases (for
- 0. 59, CHz =0.019, and C

m =1)an C

ox’ Mfuel N
data are given in Table 7. 9.

= 0.391.

H,0

The rest of the initial

The stagnation temperature of the gas is related to the characteristic velocity as

«*’ lS'xv‘ﬂ]”

where

Tkt
1“*'V/k-+1/K .

2

)

!
—i

B is the mass flow coefficient, k = 1.22 and R = 44.49 kg + m/deg.

(7-7-14)
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kcal/(m hr)

nr
o
kcal(m?2 hr)
r .
5 ¢"7‘
a -
7F r'ld
ot
St Jr
s
JE Pd
2t
r i1
g
A~
Plane of - o
f extraction : £ L@——— ane of jector
= l E I} exit section plane
£ oot Injector g
g plane 'E, 2
g =
-/ 2
G T e
= 20 28 w0 X0 Wl
Lx; L L . N ! Distance along nozzle axis x, mm
00 Joo 350 0 45
Distance along nozle axis x, mm FIG. 7.40.
FIG. 7.39.

FIG. 7.39. Comparison of the results of calculating heat transfer on a
nozzle with the experiments of [247]. Py, = 6.82 kp/cm?. The curve was
calculated by (7-6-16) and (7-6-17); ©, & —measurements of q, from the

temperature drop in the wall; broken line—results of measuring q, by the
calorimetric method.

FIG. 7.40. Comparison of the results of calculating heat transfer in a
nozzle with the experiments of [247]. Pg, = 14.06 kp/cm?. The curve was
calculated by (7-6-16) and (7-6-17); 0, 0 —measurements of Q from the

temperature drop in the wall; broken line—measurements of Ay by the
calorimetric method.

Table 7. 9. Initial data for example 3

7. C 1 000 1200 140 1 600 1 800 2000

Cp, kcal/(kge+deg) [ 0,473 [ 0,49 | 0,505 | 0,517 | 0,527 | 0,536

w10-9, kgesec/m?[ 3,86 | 4,25 | 4.6 |49 [53 |5.5




Then, Ty = 2,820.7 °K for ¢* = 1,617 m/sec and Ty, = 2, 940 °K for ¢* = 1, 653
m/sec.

The computational formula for the heat transfer coefficient has the form

.=._g-cm 3 600y,u, p,-o,uq;m\@ R )m

crit,

Bl 4m . o —avT (71-7-15)
m) Yeritw ([ R 1o
X [ 2PE%0gp,, {)lllm (Rcrit d J
Taking m = 0.25, B = 0. 0252 and Pr% 7" = 0, 846 we have
R \13
« == Cp(ﬂ.w.Ss.G‘I’m (@;‘)
Fo R - |7V (7-7-16)
YerWer KN, . ==
X 0,018 =< oxyw (Rcm) dx
The magnitude of the specific heat fluxes is determined by the formula
qw=a(Tw—T"w). (7-7-17)

The calculation results are given in Table 7.10 and are shown in Figs. 7.39 and
7.40. Given in the same graphs are the results of the experiments of Whitte and
Harper [247], which were obtained with an engine under the same conditions for which

Table 7.10. Table for calculation of example 3

—6 ! —6
Croqi) | Cpoy [9°100) . 14102

Rep\—0.78 o .
Zer) 7""0(2)! kcal | keal kcal ! kecal 'Re**()

R/

R
x,m |Re*p(()| Re*rg)| ¥p -—Cl(

R ATy | 4Ty | ey

| i |k—g_-—c_1e_g}kg-deg mz'hr_m

| |

| i .
j | | !
0,213 | 9850 {17500 | 2 0,782 | 9,83 [234.2 2462 | 252 | 508 54 10,556 | 3,52 | 6,33 | 8700
i ‘

U
0,229 110900 {19350 | 1,96 | 0,808 0,858 340 ; 460 { 27! 548 : 0,552 ; 0,554 | 3.64 I 6,60 9780
0,241 12650 [22450 ; 1,94 | 0,877 0,903 2330 ; 2450 t 317 642 l, €.550 1 0,552 | 3,96 E 7,36 11300
0,254 | 14700 26100 | 1,92 | ©,938 0,955 ; 2320 12430 | 354 738 % 0.549 1 0,550 | 4,21 8,02 | 13150
0.266 | 16400 {25100 | 1,90 | 0,987 2,991 2350 2420} 201 8:C | 0.548 | €,550 | 4,56 R,44 | 14650
0,279 117300 {50700 | 1,88 | :,00 1,06 2300 24310 ) <14 835 | 0,348 | 0,048 | 4,55 8,41 | 15350
0,292 117000 30200 | 1,82 ) 0,987 0,99 2290 1 2405 | 401 810 | 0,542 | 0,545 | 4,26 7.91 | 15500
0,305 {16100 | 24600 | 1,80 | 0,937 0,952 2280 | 2400 | 362 732 10,540 | 0,542 | 3,81 7.06 1 14900
0,317 | 14820 {26300 | 1,75 | 0,885 0,910 2270 1 2395 4 s 649 | 0,535 ] 0,537 | 3,35 6,15 | 13150
0,350 13400 {23850 | 1,68 | 0,833 0,872 2270 | 2390 | 286 57% 1 0,530 1 0,532 | 2,87 5,89 | 12000
0,356 | 11500 {20900 | 1,64 | 0,749 0,803 2260 | 2380 | 232 466 | 0,525 1 0,527 | 2,33 4,28 | 10400
0,361 110130 {17950 | 1,54 | 0,677 0,746 2250 {2370} 189 374 | 0,517 1 0,520 | 1,82 3,30 1 93500
0.406 | 8430 {16500 | 1,50 | 0,618 0,695 122402360 | 158 | 319 | 0,510 0,512 | 1,49 2,73 ! 7500
0,432 | 8080 | 14400 | 1,46 | 0,569 0,654 2230 | 2350 | 133 269 | 0,507 | 0,510 | 1,235} 2,31 ‘ 7180
0,457 1 7320 113000 | 1,42 { 0,527 0,617 2230 | 2350 | 115 232 10,5021 0,505 | 1,06 o7 0 6440
0.465 | 7040 112550 | 1,40 | 0,514 0,607 222512340 | 109 221 0.500 { 0.503 | 0,495 | 1.8 6320
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the calculation was made. The heat flux was measured by two methods, balance and

non-stationary. As can be seen from the graphs, the proposed calculation method is
in satisfactory agreement with the experiments.

Example 4. Calculate the changes in momentum loss thickness and shape param-
eter H for a supersonic turbulent boundary layer in the diffusor region. The initial
data for the calculation are as follows:

Tyo = 338 °K; diffusor wall thermally insulated;

Py, =1 kp/cm?;

6**) = 0.406 mm (at X = 0).

The variation of the Mach number over the diffuser length is given in the follow-

ing table:

x=2x/L

0

0,2 0.4 ' 0.6 I 0.8 1,0

M

3,01

2.76 | 2.49 l 2.17 I 1.3 | 1.7

The geometrical dimensions of the diffusor are shown in Fig. 7. 41.

marg ™

/73 /J

g4 4

I R TR TR

FIG. 7.41

Y[ J 2 [#
s e i =
Q¢ -Q2 0 02 04 05 08 10
FIG. 7.42

FIG. 7.41. Variation of 6** over the length of a supersonic diffusor.
The curve is theoretical; the points represent the experiments of [178].

FIG. 7.42. Change of the shape parameter H over diffusor length: 1—
calculated by the proposed method; 2—calculated in [198]; the points
represent the experiments of [178].

The results of calculating a turbulent boundary layer by the proposed method for
the conditions under study are presented in Table 7.11 and in Figs. 7.41 and 7, 42,
Shown in these same graphs are the experimental results of McLafferty and Barber

[178]). As can be seen from the graphs, the proposed computational method is in
satisfactory agreement with the experiments.
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Table 7.11. Computational results for example 4
—_— x— -— l.. dW ’
x M m}"s'ec ¢ | Hoel @ B c SAdx-IO' Re** | i | dx | =100 =108 T H H
sec-1 cr
0
! f l
0 3,01| 668 |2,64 |{5,82/0,5 |1 I 0 1'1050(0,406|1310] 0,8 1,02 |0,785:0,975| 5,66
0.2 12,76 | 644 {2.37 |5,19{0,54]1,34,0,69 0,616 1460 10,45511750, 1,13 | 1,31 |0.86 :0,98 | 5.08
0.4 12,49! 616 |2.12 [4,59|0,5811,7810,485 1,21 2020(0.490,23901{ 1.66 | 1,638 0.98510,999 4,59
0,6 {2,171 577 1,85 |3,94!0,6312,32:0,349 1,83 2690 10,496 2180 1,8 2,4 0,75 {0,9v | 3,78
0,8 (1,93}542 1,67 [3,50]0,68(2,98|0,255 2,40 358010,5461 1500 1,65 | 2,88 [0,57410,94 | 3,29
1,0 1,79 518 {1,57713,2710,7313.8 |0,189 3,00 467010,63 [ 1500] 1,97 ] 3,28 |0,6 0,941 3,07
—0,4 |3,01] 668 [2,64 {5,82 0 0 0 0,89 15,2
Remarks:
i
8w . gy B\ Po G .
"’S"*”cr’%‘ C'"p“’")gu*ﬁcf)_ﬁ" A"v(m) oo i ¢
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CHAPTER 8
TURBULENT BOUNDARY LAYER OF GAS ON A PERMEABLE SURFACE

~
ot
<©
[02]

8.1. Comparison of the Limiting Relative Laws of Friction, Heat-and Mass Transfer
on a Permeahle Plate with Experiment

It is well known that when gas is injected at the surface of a body the stability of the
laminar boundary laver decreases. It can be assumed that in a turbulent boundary
laver the contribution of viscous friction forces to the total drag decreases with in-
creasing intensity of injection. This fact reduces the influence of the Reynolds number
on the relative laws of friction and heat transfer and should favor the applicability of
the limiting laws of friction and heat transfer for practical calculations in the range of
finite Reynolds numbers. In order to compare the experimental data with the limit _/_1_9_9_
formulas let us obtain the relative frictional-drag and heat-transfer coefficients for
the condition ReY = idem.

The integral momentum relation for a plane turbulent boundary layer of incom-
pressible fluid on a permeable plate can be written in the form of (1-2-11):

%%?:__-(w+b) e, (8-1-1)

where, as usual, Re**=1wpd**/v; Re,=wox/v.

Let us examine two canonical cases: b = const and jw = consf. We shall assume

that the turbulent boundary layer develops off the leading edge of the plate, i.e. for
x =0, 6 =0. Then, taking Ct, = B®Re**)-M_ for the case b = const we have

Re** = [ 3- (1 + m)(T +b) Re; |+ (8-1-2)
We define the friction coefficient for standard conditions by the formula
= (8-1-3)
x

where
my= s B = (%)%(1 +my™.

When m = 0. 25 and B/2 = 0. 0128, we have ¢, /2 = 0.0296 Re)—{o. 2,

fox

We introduce the relative friction coefficient and the permeability parameter in
the form

| ’L)
r4 »
\210 Re, (8—1—4)
by= e ;w.
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The quantity ¥, is the ratio of the friction coefficient on a permeable plate to the
friction coefficient on an impermeable plate for equal values of ReX.

From Eqs. (8-1-2) and (8-1-4) it follows that
m b
= b™, =
Chn=re @+ b= o
- . (8-1-5)
2= g oy derits=erit
— (L 5 2 - T
Let us rgcall that ¥ = (c“ )Re“, b=¥f, o When b bcrit’ we have ¥, =T =0.
From Eqgs. (8-1-5)
w.x:: (l ——2‘)‘%‘, 8-1-6)

consequently, W,—»—b, when b-——4; that is, in this case

“

Jw= ——c2—' (8-1-7)
and
Tw = P (— Wy,) W (8-1-8)
Thus, there exists a limit solution for suction of a turbulent layer, as is known
[100], an analogous result is also obtained for a laminar boundary layer (the case of an

asymptotic solution). As follows from (8-1-1), in this case Re** = const and 6**
= const.

When m = 0. 25

. (1—0,255)1 )
¥ew = o 2580

_ b . (8~1-9
by = (T50,258)5+ )

brcrit = 3,0
and the flow being examined exists in the region

—4<b<+4 and ——00<b, < +3,0.

For the conditions j,, = const and the boundary conditions 8** =0 atx =0 for

m = 0.25, we get from the momentum relation
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Re*® % Re"”_ 4 d Re**

Re; = ’
B 1 - . ]
(T+T TwRe™! )

16 % t1) %29 +9 7
=37wﬂ‘(l+3Re"1/4) {3' Re™* — 23" (Re* /!

+ 63" (Re*)"? 4+ 123 (Re*)' ' — 121
+ B Re*™ | ln[l 4 3(Re*)' ' I}

(8-1-10)

where

B=7./28.

i

Expanding the logarithms from this formula into a series and limiting ourselves to
the first five terms, we get

Re** = [% (1 43Re™ 1) Re,]'ﬁ . (8-1-11)
Consequently,
__ (1—0,256) |
Yoo = (14 0,256)*2 *
— b . -1-12
by= (1 +0,255)%7 * (8-1-12)
bgcrit=3,5.

The asymptotic solution for these boundary conditions also yield
1w=‘_prfwo.

In the region of existence of a flow with jw = const

—4<b<4 and —co<b, < +3,5.

When Ce = const (e.g., flow over a rough surface), the conditions b = const and

jw = const become identical and the functions ¥ and \I/x coincide.

Given in Fig. 8.1 is a comparison of the results of calculating the frictional drag
laws by formulas (8-1-9) and (8-1-12). As can be seen from the graph, the difference
between the formulas is not great.

The triple Reynolds analogy should be satisfied fro these conditions; that is,
‘Pm=“y5m=‘PD~. (8"1‘13)

where, as will be shown below, the conditions Tw = const and Cw const correspond to

the conditions bT = const and bD = const.
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1 N FIG. 8.1. Comparison of the relative friction
| \\,\ coefficients on a permeahle plate for the case
a4 N 2 y b = const (1) and jw = const (2). 1—calculated
B A\ by (8-1-9); 2—calculated by (8-1-12).
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= FIG. 8.2. Influence of gas injection on
10 the turbulent friction coefficient on a
. permeable plate: 1—gas suction, cal-
as i culated by (8-1-12) for b< 0; 2—gas
5 d injection, calculated by (8-1-12) for
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FIG. 8. 3. Influence of gas injection on the coefficient

of heat transfer on a permeable plate.

1—calcu-

lated by (8-1-12); 2—calculated the empirical for-
mula of [83]; O—[180]; ©—[141]; @—[90]; O—[125];
&—[238]; @ —[96]; @—[145].
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The existing experimental data from measurement of friction on a permeable plate
are compared in Fig. 8.2 with the limit formulas (8-1-12). The agreement between
the limit frictional drag law and the experimental data obtained for finite Reynolds
numbers can be considered as completely satisfactory, although the great scatter of
the experimental points, especially at high injection intensities, should be noted.

From our viewpoint, the most reliable data of Kendall {135], Dershin [135] and Mickley
fas processed by Leadon) [169] are located somewhat above the limit relation.

The limit law of heat transfer is compared in Fig. 8.3 with experimental data on a
permeable plate for the subsonic velocity range with injection of a homogeneous gas.
As can be seen from the graph, the experimental data on heat transfer exhibit substan-
tially greater dispersicn than those on friction, especially in the region of intense in-
jection. From our viewpoint, the most reliable results, obtained by Kays et al. [182],
are located somewhat above the limit relation, which may be explained by the influence
of the finite Reynolds number.

2

L

8. Critical Injection Parameters

Three regions can be defined for gas injection through a permeable surface,
depending on the intensity of injection, as follows:
1. The friction coefficient Cf/2 in the momentum equation is commensurate with

the relative injection jw. In this case the basic assumptions of boundary layer theory

remain in force, but a simple self-similar solution cannot be obtained because the
equation contains the friction coefficient.
2. Relative injection is considerably greater than the friction coefficient (jW

= c_f/ 2, but the momentum of the injected gas mass is much lower than that of the

main gas flow. In this case the fundamental assumptions of boundary-layer theory
remain in force, and a simple relationship between 6** and Jw is obtained from the
momentum equation:

0**=jwx. (8-2-1)

3. The momentum fluxes of the injected gas and main flow are commensurate. In

this case the assumptions of boundary-layer theory are unsuitable.

An approximate estimate can be made of the region of variation of the transverse
mass flow, where the basic assumptions of boundary-layer theory remain valid.

Reducing the Navier-Stokes equations to dimensionless form and considering that
wlv ~ %Y—' = f,
during gas injection, we get

9P
ox’

ow’ ow',
s oo Ty ¥ P

! ) !
'y
ox’
1 ) !

L forws 4 0t
Re( ox:2 oy/2 ’

1 13’2
oP’ 1 d’avy dmlv'y
=% +§;( +—07)

+

1/8¢
dw'y
+@vg
1114

w' —
* ox"?
! '3
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Thus, the principal consumption of boundary-layer theory (that is, dP/oy=-0)
remain valid if f~ &, that is, WYW/WO ~ 8 /L. Since 6/L =~ 0. 37/Rex°' 2, the domain

f applicability of the methods f boundary-layer theory, according to the estimates, is
bounded by the maximum value of the permeability parameter bx = 12.

One of the interesting results of the asymptotic turbulent boundary-layer theory
under development is that the boundary layer separates from the wall at certain injec-
tion intensities, defined by the critical injection parameter. In particular, the critical
injection parameter is bcrit = 4 for injection of a homogeneous gas into a subsonic

/205

stream under quasi-isothermal conditions. In this cross section the friction coefficient
equals zero, the wall temperature equals the temperature of the injected gas and the
concentration of injected gas at the wall is 100% .

Taking these ideas into account, a qualitative picture of turbulent boundary layer
development over a permeable plate at a constant mass flow rate of injected gas can be
given in the form of the diagram illustrated in Fig. 8.4.

w
el

FIG. 8.4. Diagram of boundary-

layer development along a per-

f? ? ? — F'f " S S T S T R N N S N N ) meable plate.
1 M i

Rl

r——

Up to the sectionx =x we are dealing with the first region. At the section

crit
X =X, it the boundary layer is displaced from the wall. In accordance with the limit
formulas (8-1-12)

Rexcritz[lolvwl—s- 8-2-4)

In the region x > Xerit the boundary laver is separated from the wall; here Eq.

(8-2~1) becomes valid. When x > X rans’ the boundary-layer equations are inexact,

<

and to get a rigorous result it is necessary to solve the complete system of Navier-
Stokes (or Reynolds) equations. The value of Xipans €20 be obtained from the esti-
mates made above:

Re‘trans :[‘2‘8]'“,]—5 (8-2-5)

Given in Table 8.1 are basic data on experimental studies in which the critical
injection parameters were measured.

As can be seen from Table 8.1, the experimental values of the critical injection /207
parameters, determined by various methods, are sufficiently close to the theoretical
limit values. Considering the complexity of determining the critical injection param-
eter and the law experimental accuracy, the agreement between theory and experiment
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Thesis, Univ. of London,

Table 8. 1. Composite table of the papers in which critical injection parameters
were measured
Author Measurement method bepie | Experimental Conditions Source
Hacker (U.S,), 1956 From the indications of |3.5-4.0 | Flat plate Jet Propulsion, 1956,
a Preston tube 26, No. 9
Hacker (U.S.), 1958 From an interferogram |8.0-15 Flat plate An ASME publication;
velocity profiles Paper No. 58-A-249
A.I Leont'ev, B.P. Mi- | Interaction for acid 5.0-5.4 Two-dimensional duct Inzh-fiz Zh., 1966,
ronov, P.P. Lugovskoy, medium with an alkali X, No. 4
1966 one
Baker (England), 1967 From the indications of {3.5-4.0 | Axisymmetric wall jet;
a Preston tube and rough, permeable Jan. 1967
velocity profiles plate
Rosenbaum and Margolis | From measurements 4.0 Flat plate Phys, Fluids, 1967, 10,
(U.S.), 1967 of pressure fluctuations No. 6
at this wall
S.A. Druzhinin, et al., From measurements of | 5.0-6.0 | Flat plate. Injection

(1968)

V..P, Motulevich, et al,,

turbulent fluctuations
and boundary layer
displacement thickness

From interferograms
in monochromatic
light

must be considered as better than satisfactory.
velocity measurements made in [49] in the boundary-layer displacement region have

demonstrated convincingly that the longitudinal velocity component near the wall equals
zero, in agreement with the adopted scheme.

of various gases
(air, Freon, helium)

Plate in a two-dimen-
sional duct

Teplo- i massoperenos,
"Energiya" Press,
1968

ENIN (Power Institute)
1969 80 .

It is interesting to note that the

An interferogram of the turbulent boundary layer on a permeable plate from the
paper of V. P, Motulevich [80] was given in Fig. 1.5. A comparison of that interfero-
gram with Fig. 8.4 als. supports the scheme adopted for turbulent boundary-layer
development in the egion of intense injection.

From an analysis of Table 8.1 it follows that the experimental values of the criti-

/208

cal injection parameters obtained by direct optical methods [149, 63] are greater than
the theoretical limit values obtained for infinitely large Reynolds numbers.

Interesting results from measurements of wall pressure fluctuations for a displaced
boundary layer on a permeable surface are given in the paper of Rosenbaum an

Margolis [201].

Shown in Fig. 8.5 are the results of measurement of the rm wall pressure fluctua-
tions at various injection intensities. As can be seen from the graph, the wall pressure
fluctuations increase with increasing injection and at certain injection rates a maximum
is observed, explained by the authors as blow-off of the boundary layer from the wall.
The broken line in Fig. 8.5 corresponds to a calculation for bcr' =
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FIG. 8.5. Dependence of the rms pressure fluctua-
tions on a plate on the injection intensity according
to the data of {201]. The dashed-line curve was cal-
culated from the boundary-layer displacement con-
dition (b = 4. 0); the points represent the experiment

of {201].
}
ym 0. i
Symbol lalelvlolola
Velocity Wy, m/sec it 32| o | =6 | ns s | s

approximately through the pressure-fluctuation maxima; this is an additional quantita-
tive confirmation of the theory being proposed.

Using the method applied in Chapter 9, letus taken into account the influence of a
finite Reynolds number on the critical permeability parameters.

In the immediate vicinity of the wall the horizontal velocity component W ® 0,

and the equation of motion for the viscous sublayer can be written as

ow, . du, .,
In integrating we find that
=¥ Jeb\ __ -2~
©= [exp( . ) IJ. (8-2-7)

in the region 0<%<g, on a permeable plate.
When jw =0, we get the usual linear velocity distribution. At the point of boundary-
layer break-away, ¥=0 and iy = bcrit \fcfo/z, the quantity bcrit having a finite value.

Consequently, w-=0 at the point of boundary-layer separation near the wall. This means
that a layer in which the longitudinal velocity component W =0 replaces the viscous
sublayer at the point of turbulent houndary-layer separation near the permeable surface.
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Taking 7€) = 0.451/;0 for the turbulent part of the boundary layer and taking into

account (1-3-6) and (5-1-2) we get /209
- d 4 ./ -
0,42 _d“: —y/ ?T\ '_' +.,w4,.,) =0. (8-2-8)
Setting ¢, = 0 and ;=0 at the point of boundary-laver separation, we get
& dw -y T =
)V — =2 wemlt g oy (6-2-9)
J ? w
When §¢=1 we have w=1 and
§ ‘tzexp’/ 0.4 V’i?.".‘.??’i \ (8-2-10)
e \ beritcre )
Accordingly,
¢ de C! S I
w
P
Since o, =0 at the point of separation,
bcritm — 7% (8‘2—12)
berit
On the other hand
b st ( S'/ [ ) (8-2-13)
In the first approximation the quantity Z can be defined as
Z=i—ll.6]/\Fm-‘;T'- (8-2-14)
The results of calculating bcrit by (8-2-13), with account taken of (5-2-5) and
(8-2-14), are presented in Table 8. 2.
The calculation results are sufficiently well approximated by the formula /210
0,83
bcx‘it Cntx[l + (Re*%)". u] (8-2-15)
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Table 8.2. Values of the critical permeability
parameter in the range of finite Reynolds

numbers
Re** 2.1 " 100 10¢ o
berit l 5.18 ’ 4,92 4,48 4.0
blegie for b= const l 3.74 I‘ 3.57 3.35 3.0

The results of calculating bcrit by (8-2-13) for a boundary layer of variable density,

defined by (5-5-13), at subsonic velocities are compiled in Table 8. 3.

Table 8.3. Values of b .. for a plate
crit

submerged in a supersonic, non-
isothermal gas stream

Reee
¢ 2.1 l | 10 ®
025 | 11,6 1 10 9,25
0.5 7.9 7,54 6,87 6,21
1 5,18 4,92 4,48 4,00
2 3.23 3,06 2,79 2,47
4 1,92 1.8 1,67 1,46

As follows from the graph in Fig. 8.6, the critical injection parameter in the
range of finite Reynolds numbers for injection of foreign gases under non-isothermal
conditions can be determined by (8-2-15), while the effect of variable density is taken ﬂ_
into account in bcritoo by formulas (5-3-5) and (6-3-6). In this case

‘bc_xjt — berita ;_1. 1 /lnl +Vi— "7:)1' (38-2-16)
berite  critow 41—\ I YT —q,
for 4’1 <1 and
berit __ 1 1 2— ¢ (8-2-17
borite 4 4 —1(‘"““ W) )
for ¢, > 1, where = po/pw; bCrit is defined by (8-2-15).
With allowance for the approximating formulas we find
berit 3 . _o_
crite 1+ 20 '8-2-18)

In particular, for injection of a foreign gas under non-isothermal conditions we get

\P] =R and
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berit__ 3
bcﬁt_m‘ (8_2_19)

Formula (8-2-19) is compared in Fig. 8.7 with the experiments of [75].

bcrit

A s,

8 Zrit_

5 g Hocrito =

¢ - 4,1 |

1] H_-

2 L, ’ . /3
TN 2 J ¢ 3

v FIN

8 N Fig. 8.7

§ 1 #/]

w' 2 34 6810° 2 3¢ 680’

Fig. 8.6

FIG. 8.6. Influence of non-isothermicity and Re** on the
critical injection parameter. 1—Re™ = 2. 10% 2—105%
3—10% 4—.

FIG. 8.7. Effect of the molecular weight of the injected gas
on the critical injection parameter. Curve calculated by
(8-2-19); the points represent the experiments of [75].

8. 3. Taking into Account the Influence of a Finite Reynolds Number on the Laws of
Frictional Drag and Heat Transfer on a Permeable Surface

In Chapter 7 it was demonstrated that a formula of the form
FT=(1 —F)", (8-3-1)
where
T=T/VT T, b=>0bcr
is universal.

Considering the relatively weak effect of a finite Reynolds number on the relative /212
law of frictional drag, we retain formula (8-3-1) also for the region of finite Reynolds
numbers and will take into account the effect of the numbers only on bcrit (by (8-2-15)).

Final conclusions as to the valdity of this supposition can be drawn after compar-
ing the proposed formula with experiment. It is well known that gas injection reduces
the critical values of the Reynolds number. If we take a minimum value of Re::rit
= 10%, we find that b, it =53 Then,

W= (1—0,1895)2 (8-3-2)
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FIG. 8.8. Effect of injection and non-isothermicity on heat transfer in

the initial section of a pipe. Coordinates §tS_t\p_ =f(b). l—calculation
wt

by (8-3-1), (8-2-16) and (8-2-17). The experimental data are from {68]:

inlet variant I: o—air-air; g, = 0.47-0.8. Inlet variant II: A—air-air, Y

=0.47-0.8; a—air-air, # = 0.3-0.42; +—helium-air. The region

bounded by dashed lines is the experiments of [(182] (air-air). Coordi-

nate Sitt =fb). 2, 3, 4—calculation by (8-3-1) and (8-2-16) for ¥, = 0.8,
0 .

0.6, 0.3, respectively. Experimental data from [68]: X—y; = 0.7-0.8,

% =0.56-0.6; ii—y,; = 0. 3; the points in the ovals are experiments with
b = 0.

FIG. 8.9. Effect of injection of a foreign gas in the frictional drag
coefficient. a—experiments ot Pappas and Okuno [191]: @—helium-air;
©—freon 12-air; o—air-air (M, = 0.3; m = 0.153); b—experiments of
P. N. Romanenko and V. N. Kharchenko [90]: o —helium-air; ®—air-
air; A—freon 12-air; the curves were calculated by (8-3-1) and (8-2-15).

berigx=4,5, ¥y== f:ﬁ)%t%'){. (8-3-3)
Given in Fig. 8.8 is a comparison of (8-3-1) with the experiments of [68], in which

ata were obtained in heat transfer in the initial section of a porous pipe under rela-

ively strong non-isothermal conditions (up to ¥ = 0.3). The effect of non-isothermic-

ty on St was determined by (8-2-16), and the function \I't appearing in ¥; was calcu- /213

ated by (4~1-5). The number St, was defined by
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_ 0.0123

Sh-—_(Re‘ﬂwJ%fFfﬁ'
K * %
M = " (5 .
where Re™ ", . = poWe; /u“_
As can be seen from the graph, the proposed calculation method yields satisfac-

tory results even for an appreciably non-isothermal turbulent boundary layer on a

permeable surface. It is interesting to note that the influence of non-isothermicity on

the relative laws of frictional drag and heat transfer on a permeable surface is con-
siderably greater than on an impermeable surface.

The experimental data of P. N. Romanenko and V. N. Kharchenko [90], Pappas
and Okuno [191] from measurements of friction during the injection of foreign gases
are compared with (8-3-1) in Fig. 8.9. An analogous comparison is made in Fig.
8. 10 with the data on heat transfer obtained in a paper of Tewfik, Ekker and Shatladen /214

[237].

Given in Fig. 8.11 is a comparison of the results of 1 measurement by Jonsson
and Scott of the helium concentration on a permeable surface with formula (5-5-7).

w

o T 7
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a4 \'é\ -
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” ‘\‘{ o
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"" 7 ’\l
brx = J¥ w5 8 Y
Stox
FIG. 8.11.

FIG. 8.10.

FIG. 8.10. Influence of injection of helium on the
heat-transfer law. Curve calculated by (8-3-1) and
(8-2-16) for Re™™ = 10¢%; the points represent the
experiments of [237].

FIG. 8.11. Relationship between the relative friction
coefficient and the concentration of injected gas
(helium) at a wall. Curve calculated by (5-5-7); the
points represent the experiment of Jonsson and Scott
[158].

Pore cooling is widely used in the supersonic gas flow region. The limit laws of
frictional drag and heat transfer for this region, as shown in Chapter 6, can be
approximated by

Y= P, ¥, (8-3-4)

where
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—1 \?

7 9 ’lF arctg M r——s—
) )

== b oy LE s
wb"(l s =(¢//‘3}o)ge..w; Re

crit w

=Wl [y, $=T [T*..
The values of the critical permeability parameter are approximated by

berit =berito ¥ w, (8-3-5)
where bcrit is defined by (5-3-5) and (5-3-6).

It should be noted that the frictional drag coefficient ¢ fo/ 2 occurring in the per-
meability parameters is also defined by Rew**. For the condition of flow over a flat

plate being considered here Eq. (8-3-4) is applicable for the laws of both heat and
mass transfer.

In calculations of heat-transfer processes in a supersonic flow on a permeable
plate there arises the question of the effect of injection on the recovery factor. Fig.
8.12 gives the not too numerous experimental data in this region, processed in the

form of the dependence of r/ryon b, = j —2-, where ¢ /2 is the frictional drag

M 'w o M
coefficient in the absence of injection, but with allowance for the effect of compressi-
bility. A substantial decrease of the recovery factor with increasing injection inten-
sity can be noted. This factor may be of great significance in generalizing the experi-
mental data on heat transfer in a supersonic stream in the region of relatively small
temperature drops. The heat-transfer coefficient, defined as Qg = qw/ (TOO-TW), may

differ by several factors from the heat-transfer coefficient o = qw/ (T:V_Tw)’ In

analogy with a subsonic flow, the second definition of the hea;g—transfer coefficient is
more convenient, since it satisfies the condition for To ™ Too q, — 0.

The experimental data on heat transfer of B. P. Mironov, M. I. Smirnov and
N. I. Yarygin [76] are compared with (8-3-4) in Fig. 8.13. The experiments were
carried out for a longitudinal flow over a porous cylinder with M, =~ 3.0 in a rather
broad range of variation of the injection parameter. First data were obtained in the
recovery factor (see Fig. 8.12), which were used in determining the heat-transfer
coefficients.* Good agreement can be noted between the experimental results and
(8-3-4).

In calculating a turbulent boundary layer of compressible gas on a permeable sur-
face allowance should be made for the appearance of an oblique shock at the leading
edge of the plate in view of the increase in displacement thickness and flow deflection.

*Shown in this graph are the experimental data of Leadon and Scott.
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FIG. 8.12. Influence of gas injection
on the recovery factor. @—experi-
ments of Yu. V. Baryshev [7] (M

= 2.5); A—experiments of B. P.
Mironov, N. I. Yarygin [76] (M
=92.06, 3.05, 4); x—Pappas and Okuno
[192] (M = 4.7); o—Bartle and Leadon
[169] M = 3.2); a—Leadon and Scott
[168] M = 3.0); o—Rubesin [206] M

=2.7). —— —calculation by the
formula [7]
14h 20 +5) (4 by 2
ral -2 - 1 -
ho o @—Pr) (2—Prp)*
[
7
8 FIG. 8.13. Effect of injection and
L — compressibility on heat transfer for
longitudinal flow over a cvlinder.
) Curve calculated by (8-3-4). The
points represent the experiments of
B. P. Mironov, M. I. Smirnov and
45— N. I. Yarygin [76].
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Shown in Fig. 8.14 is a shadow photograph obtained by Yu. V. Baryshev of a

boundary layer on a plate with an initial porous section in a supersonic flow. The
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FIG. 8.14. Turbulent boundary layer of compressi-
ble gas on a permeable surface (shadow photograph).
M, = 2.25; jw/pm Wg = 0.032; pg;w; - mass gas flow
behind the shock; the white line shows the position
of the shock calculated by (8-3-7).

shock intensity and therefore the parameters at the outer edge of the\'boundary layer
can be determined using the formulas of gas dynamics for flow past a wedge.

The angle of flow deviation can be determined in the first approximation from the
boundary layer displacement thickness on the plate.

The value of the shape parameter H is calculated by the formula (for y<1)
H=[2,41¢*+1,38\¢ —0,52][1 +0,035). (8-3-6)

The flow is deflected appreciably under strong injection; in the first approximation, /218
therefore, we can write

da.‘ =H ds*® _H‘

tgo=— Tz 7 =Hiw- (8-3-7)

where w is the angle of flow deviation.

Using gas-dynamic functions [39], the shock intensity and the gas parameters
behind the shock are determined by the method of successive approximation.

The position of the shock, calculated by the proposed method, is shown in Fig.

8.14. Satisfactory agreement between calculation and experiment is noted.

8.4. Solution of the Equations of Momentum and Energy on a Permeable Surface
of Weak Curvature

The integral momentum relation for a plane turbulent boundary layer on a perme-
able surface can be written conveniently in the following form:

Mdlk,f:" +(1 + H) &u:"d;”; =Re, -~ (T + 1), (8-4-1)

where Re**w=powod**/uos; H=8*/6** Rer=powol./po; W= (cr/cp)re**; b=Fy (2/cs0).

The dependence of the shape parameter H on the non-isothermicity and injection is
determined by the formula
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H ==%%2 (1 - 0,056) H,, (8-4-2)
Ve,

where $i=iw/is, Yc,=Cpw/Cro; $y=Mi/Mw, Ho=134T.

For a constant value of the permeability parameter and for constant surface tem-
perature of the body we get from (8-4-1)

Re**, =u;" [‘ +2"" BRegy (lp_*_b)jgﬂ.:)*(lHn)ldz
= (8-4-3)
+ (Re™ /T, )E""]m‘
where Re**w =powod**/uw: Rew =poul/pw: To=wa/wm x=1+H, F=x'L; ¥ is deter- /219
mined by (8-3-4). The local friction coefficients are found by the formula
T= ww?agfm" (8-4-4)
For an axisymmetric boundary layer we have
X? T M Apmet dg 4 (Re**, @, D)“_‘;’;‘ ]# (8-4-5)
x,

For a flow without a gradient dWo/d}—( =0 and Egs. (8-4-3) and (8-4-4) reduce to
Egs. (8-1-5). A solution is obtained for Eq. (8-4-1) for critical injection conditions.
In this case

Re**, = Eo—l [Li'z_’i BRegwb

= (8-4-6)
1
—x m 1+
+Rer, 72" |7

where bcrit is determined by (8-3-5). The corresponding law of distribution of injected

gas that gives rise to boundary layer separation is found from the formula

> (2} . Bbcrit
lw—Powo_2.‘ brie=" oWs 'H?_C:;_m_ (8-4-7)

The other limit solution corresponds to the case of gas suction from the surface
according to the law

(8-4-8)

b ——
w=
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Then, from Eq. (8-4-1) we get

d Re** dy
SREW L Rewdse g (8-4-9)

w, dJdX

Hence, taking H = const in the first approximation, we have

Re** @, V+H
Re™ s =(;—) ~ (8-4-10)
From Eq. (8-4-8) it follows that
bborip=—T =¥, (1 — b, (8-4-11)
and therefore
b= L feriey /T berie |, (8-4-12)

Thus, knowing the dependence of Re:V* and b on x, we get the law of gas suction

from the surface corresponding to the self-similar solution:

B
fw = poob SRe ™ (8-4-13)

A second approximation can be introduced using the dependence of the shape
parameter H on the injection parameter b. A solution to the problem can be obtained
in more complicated form for the case of a given transverse mass flow distribution
over the surface of the body.

As the first approximation we can use the solution for a given distribution of the
permeability parameter b = f(x), with cf0/2 being determined from the integral

momentum relation for an impermeable wall (7-2-11).
Then,

b= fu ;o= (®) (8-4-14)

and from Eq. (8-4-1) we get

-- S (1 h) -Lin iz,
d

Re**, =e * [112’1‘ BRe,,, | (T +bu+m

Slee— !

(8-4-15)
d —_ 1
"(H»H)-: In"z —

Xe - mdr4C|".

——

The local friction coefficients are found by formula (8-4-4). The second approxi-
mation is obtained after substituting Re:‘v* from (8-4-15) into (8-4-14).
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For the imner axisymmetric problem of gas flow in a nozzle, taking Eq. (7-2-47) /221
into account, we have -

Re"w= {—2— BRe,, I~ “"”j(‘l’m-i'b)
- (8-4-16)
U™ Hpm -1 g +c\”'“
The dimensionless velocity U is linked to the duct geometry by the formula
1 L
vy = (:I :)o.s (H?- 1>H et (8-4-17)

The energy equation of a two-dimensional boundary layer on a permeable surface
can be written conveniently in the following form:

dReT Re LU0 — Re,St, (T + b)), (8-4-18)

where
Rell"_ — inna;i/y_*; ReL _ PowoL‘/l“’;

Bi==i%y —iy; 2= x[L; T=(St/St)geee s bi=Fw'She

Let us consider the thermal energy balance on a permeable surface. From Fig.
8. 15 it follows that

v —p K, (8-4-19)
S )

where K ——H is the generalized phase transition criterion introduced in [43];

o1 _ Irtlens I ) _ _
o=1 Wm—iy P AR 1S the radiative heat flux; and 9 ong 18 the conductive heat flux.
For the case YR T Y%ond 0 we have
0
dRe ‘-f-Re <400 Re,Stebi (1 +K). (8-4-20)

Solving Egs. (8-3-1) and (8-4-19) for the thermal permeability parameter we get /222

Kb(cri'/ 4q"!"FM -4 -
b=biceie—Fw,\ V Koiem T !~ 1)- (8-4-21)
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FIG. 8.15. Thermal energy balance in a
permeable surface.

The values of bi and K are determined as functions of X from Egs. (8-4-19) and
(8-4-21) for known functions iw’ i' and known parameters at the outer edge of the

boundary layer. The integral of the energy equation is written as

1
[T 1 K—'l
Re*; = L [ 14 mem—w

(8-4-22)
1

X (4 K) it s Ret* 80 e

In calculations of porous coolin

g the mass flow of coolant gas is usually the desired
variable; it is defined by the formula

Jw =powyStub;, (8-4-23)

where

BPr-e.
ty = ———;
St, 2R

Re*s, ., — Re**, (Eﬁ)

For the subsonic gas flow region, with constant T and T an

d the boundary condi-
tion Re"""T = 0atX =0, we have

F .
Re**, = {%Bbr (I 4- K) Re, (S w,dz }.""’l . (8-4-24)
Taking (8-4-23) into account we get
b 2
v, (l—-b T )
St T crit
(§€I)R = ' (8-4-25)
e

m
. by m+1
N LG R

where Stk are the local values of the Stanton number on an impermeable surface for

the same ReX and an analogous law of velocity variation at the outer edge of the
boundary layer over the length, with Tw = const.
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We have the following relationship between St,, the Stanton number calculated from
the actual value of Re™™ but without allowance for the effect of transverse mass flow,

and St__: T
0x
(&);’_n: ! _
Stee T by \? meT (8-4-26)
[" (l " Preriy) +b’]
and
b
b, = Li .
b\ T 8-4-27)
[wr (1— ) +b] (
Tcnt/

To determine the mass distribution of injected gas over the surface of the body,
we get from Eqgs. (8-4-26) and (8-4-24)

B
T b
Iw==p,w, ,, = = (8-4-28)
B 1 m+i
1+ K)) [ 2(;?,.4:, ) Re,, S e d=]
0
Taking B/2 = 0.0128, m = 0.25 and Pr = 0.72, we have
bOB 1
]w o (l+1\)“ —‘ 032"
Red? [5 i di] (8-4-29)
4
For flow over the forward portion of blunt-nosed bodies the law of velocity varia-
tion at the outer edge of the boundary layer is close to the linear law:
we=Cx, (8-4-30)
where the value of the constant C depends on the shape of the body in the flow.
For this case we get from Eq. (8-4-28)
B —
P"wnc _2__br;_wl 0.8
fw= p : —. (8-4-31)
m+l B 1 .C m+l
(1 +K) [_2(;.4;5) Re; ]
For B/2 = 0.0128, m = 0.25 and Pr = 0.72 we have
w,,b3320.0C08
= T (8-4-32)

(1 + K)**Reg?
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In conformity with the Reynolds analogy, formulas (8-1-9) and (8-1-12) remain
valid for the case of longitudinal flow around a flat plate. From Eq. (8-4-21) it follows
that the case bT = const corresponds to the case of Tw = const being considered.

From Eq. (8-4-29) we have

bO,s S—02
for == Pl — L . (8"4_33)
lw PoWo (l +K)o,2 R33]2
From Egs. (8-4-32) and (8-4-33) it follows that to maintain constant emperature
of a plate in a longitudinal flow, the mass flow rate of the injected gas must decrease

in inverse proportion to X: %, while in a transverse flow it must increase in proportion
to x0- 6,

In the case of a given mass flow of coolant gas the thermal boundary layer equation
can be written as

d(Re“.Ai) L "tw__‘l A
Yz ——Re',‘ :\‘..,w—_flfw—)v (8-4 34)
where Re*r=jcrL/p* and i’ is the enthalpy of the injected gas.
For the region of subsonic velocities and constant physical parameters /225
d (Re**,.AT)
——— =Re*, (1 +K). (8-4-35)

The integral of Eq. (8-4-35) under the boundary condition Re**T =0atx =0, is

z
Re** AT = (T, —T") Re,, S T, 42 (8-4-36)
0
or

Re..

K+1=

x

- (8-4-37)
Re;) 5 jw:dE
0

where Reri=powol/n*, Jw=jw/poiwo, and pa@u is the specific mass flow in the section
X = 0.
On the other hand, it follows from Eq. (8-4-19) that
b 2
""\/"b r.\
Kem o ‘Terit) (8-4-~38)
p—— br *

From Eqs. (8-4-37) and (8-4-38) it follows that
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A . ] .
Re** = [\P"(] _ ) +br].%f]m dez. (8-4-39)
0

brcrit

Thus, the dependence of the number Re**T = f(x) in the case of a given mass flow

of coolant gas is obtained directly from the energy equation (8-4-34) and the equation of
heat balance on the surface (8-4-38). The local values of the Stanton number are

determined by the formula
b 2
B®, (1 - r )
Tcrit

St= ) e - = . (8-4-40)
r €1 m
2P Ty, | — ! _ dz
{[ U7 Orenit) +b,] br 57‘" }
Strictly speaking, Eq. (8-4-40) is valid for the boundary conditions bT = const, /226

but, in analogy with the law of heat transfer on a permeable plate, it can be assumed
that heat transfer law (8-4-40) is conservative to variation in the mass flow rate of the

injected gas over the length of the plate.
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FIG. 8.16. Effect of various gas injection laws on
the heat-transfer law. 1—calculated by (5-2-1);
2—calculated by (8-3-1) for Re**T =100. The

points represent the experiments of Whitten,
Moffett and Kays [244].

Range of Re**y

Symbols ! Boundary conditions
| .

. 1,7-108—~80.10
+ M,{«w\ ‘ 1.100—-128.100
(-] W%“H‘% : 2.108—70. 108
|
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The results of an experimental check of this hypothesis are given in Fig. 8.16.
The experimental points in the figure, taken from {244], correspond to different laws
of mass flow distribution of injected gas over the length. As can be seen from the /227
figure, the experimental data confirm that the heat-transfer law is conservative to
variation of the boundary conditions and are in satisfactory agreement with formula

(8-4-40) . Equations (8-4-39) and (8-4-40) are solved for Tw by the method of
successive approximation.

For the case jw = const we have

b 2 mel
Re®y'= {2 s Rex ["t(‘ —3 '.) +br]} (8-4-41)

and

B _f o \'
- %, 1=
LN "rcrit)

St= — . (8-4-42)
B bT 3 mr ) :
{W Re, [11’,(1 —brcm) + br]} Pre.1s
From Eqgs. (7-2-67) and (8-4-42) it follows that
. o,
st v,(l_b:r ' )
§F.‘.‘)R. = < (8-4-43) |

oy \! m¥l
" [nes) ]

where St:;‘x is the Stanton number on an impermeable surface for the same value of Re

temperature calculation is as follows:
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‘ X
and the same law of variation in mass velocity over length at the outer edge of the
boundary layer.
Comparing (8-4-43) and (8-4-25) we have
St St
25),.~(),. st
for arbitrary but like velocity distributions at the outer edge of the boundary layer.
Accordingly,
b
bre= ; LI 8-4-45)
b, \: mr (
L 7 —_ b
[=(: )+
For quasi-isothermal conditions (\I't ~1.0; chrit =4.0), the sequence of wall- /228



1. We determine St:;: from Eq. (7-2-67) for given Rex.

2. We determine b =—J‘—”— 1
) Tx  powg St °

3. We calculate bT from Eq. (8-4-45) and St from Eq. (8-4-43).
4. We determine the value of the Kutateladze number:
 pew ‘
K:=—;;v—'5f oo K= w,,/b,

and the dependence of the wall temperature on X:

KT+ T
To="0F%

(8-4-46)

In the case jw = const, it follows from Egs. (8-4-21), (8-4-36) and (8-4-38) for the
region M, > 1 that

{bcrit‘“’7£:§,—2t [Vf:::;+ 1 — 1]] K 1)

(Reg 2)1Pre.s 74,28
= 0,0128i, i

(8-4-47)

In this equation the left-hand side represents a certain function F, dependent only
on the enthalpy ratio

Yi=iwlio, $'=0lio, K= ($i—¥")/ (1—%:)
and M,.

The results of calculating the function F by Eq. .(8-4-47) are presented in Figs.
8.17 and 8.18. This auxiliary graph makes it much easier to calculate the tempera-
ture of a porous wall for constant mass flow of injected gas and arbitrary law of
velocity variation at the outer edge of the boundary layer. With a known w = f(X) for a
given jw the right-hand side of the equation is a known function of X. Then the desired

wall temperature is determined in Fig. 8.15 from a given value of ¢’ and M,.

In the more general case, the problem is solved by the method of successive /230
approximation, taking into account the effect of non-isothermicity of the chemical
reactions and the inhomogeneity of the injected gas on \I't and chri ¢

The proposed method of calculating a thermal turbulent boundary layer is not diffi-
cult to apply to the case of an axisymmetric boundary layer. In this case the integral
energy relation is written in the form

d Re** Re**( d (Ai dR,
SRy ) = ReSub L+ K) (8-4-48)
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FIG. 8.17. Dependence of the function F and of

chri ¢ on non-isothermicity and compressibility;

d= i'/i**w. 1—d = 0.392; 2—d = 0. 64; 3—d=0. 812;

4—d =1.23; 5—d =1.4;6—d =1.56; 7—d = 1.73.
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FIG. 8.18. Dependence of the function F and of

b it on non-isothermicity and compressibility in
cri

the porous wall cooling region. d = i'/i**w; 1—d
=0.392; 2—d = 0.64; 3—d = 0.812; 4—d = 1.23;
5—d=1.4; 6—-d =1.56; 7—d = 1.73.
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The rest of the reasoning is as before. For the internal problem (gas flow in a
nozzle with porous walls) it is convenient to make use of continuity equation (8-4-17).
Then the integral of Eq. (8-4-48) is written as

in
o __ | 1+m 7K—1\05 2 \NK=T = iem
Re '——AT{ 9 Pro.15 (K+l) (K-f—l) D-Gtm)
P A
XSb; (1 +K) Ait-mpm=1 dx 4 (Re**,-AiL)Hm}'*" . (8-4-49)
A

With a given geometry of the nozzle flow section and a given variation of the
parameters Aiy, bi and K with respect to X, the local values of Rei** are determined

from Eq. (8-4-49) and the mass flow distribution of the injected gas by (8-4-23).

This method of calculation is based on the assumption that the heat-transfer law is
conservative to a longitudinal pressure gradient. But, as shown in the paper of Baylay
and Turner [104], this method can also be applied to the case of appreciable longitudi-
nal gradients if the effect of the pressure gradient on the critical permeability param-
eter is taken into account in the heat-transfer law. For the case of flow around the
porous blade for gas turbine, according to [104],

bcrit 1 dw, \-?
”crit.—(l T w, dz ) ' (8-4-50)
when X = x/L and L is the blade chord.

It should be noted that formula (8-4-50) is in satisfactory agreement with the
theoretical formula (6-5-17).

The results of processing the experiments of Baylay and Turner on the local heat-

transfer coefficients on the blade of a gas turbine with pore cooling [104] are given in
Fig. 8.19.

kcal/(mZ2. hrs/deg)
B00( T
250
2000
i |‘\ z FIG. 8.19. Distribution of heat transfer
o0 N I coefficients over the surface of a porous
. AR blade of a gas turbine. The curves were
20 o 2 \\\ 2 calculated by the proposed method: 1— ¥
000~z o § & = (0.376; 2— =0.437; the experiments
. Yt L j H r’\\\ of Baylay and Turner [104]: @—3
- \ = 0.485; ®@—y =0.437; 0—y = 0. 376.
* o1 1% ° Y /
3
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The agreement between theory and experiment for a concave blade surface, con-

| sidering the exceptional complexity of the experiment, must be assessed as being good.
The deviation of the experimental data from the calculated curve on the convex blade
surface can be explained by the laminarizing effect of the longitudinal pressure gra-
dient, which is disregarded in the proposed theory.

8.5. Turbulent Boundary Layer on a Permeable Surface in the Presence of Chemical /232
Reactions

The method outlined in Section 8. 4 for calculating a turbulent boundary layer can
be applied to the case when chemical reaction takes place in the flow and on the sur-
b face of a body.

The integral energy relation in this case has the form

d Re'.u
dz

d (Aiy)

m= RELSf.W (l +b,‘,), (8—5—1)

+Re,
where

St.w — Sl! = Gy /PowoAi‘.; Ais = i.): w —1

Iw?

i;w is the total equilibrium enthalpy at the wall; iZw is the total enthalpy at the wall;

biy == Ju 'slT, (8-5-2)

In many practical cases it is possible to neglect thermal diffusion, pressure diffu-
sion and diffusion thermal conductivity. Then,

A 9% > de; , PDiCp - . oc
‘Iwz="’¢‘ [""W “‘Z‘z‘;i’f‘_l' 2&'—07'] ) (8~5-3)
i=1 iml v

where

n
i.! =i2 -Jrf (wi /2); i: — 2 Cl'i,';
[ 3]

T
g:ogc,,dr +

i(i) is the heat of formation of the i-th component; and

Re**; — Powos",: In*, 3"”;
1 o
e G
Pe™s Uy~ lrw ¢
s .

* . %
=i, andi

For the subsonic gas flow region i s sw sy

187




Let us examine the case of a ""frozen” boundary layer, when all the chemical /233
reactions take place on the surface and the intensity of burn-up of the material is
governed by the process of oxidizer diffusion through the boundary layer to the sur-
face of the body.

For these conditions, taking the total enthalpy distribution and the reduced oxidizer
concentrations over the boundary-layer cross section to be similar,

"g—"!w _ c?—(c?)w (8-5-4)

Prw=tw () (Hw

w—
and taking into account the mass balance of the surface, /5-5-6), for
Le=pDCP/l ~1,
we get
by == (8-5-5)
(1w

Here c(i’ is the reduced concentration of the i-th chemical element, for which the

heat-transfer surface is impermeable, regardless of the chemical compound contain-
ing it.

Accordingly, for the injected component we have

__%©O (8-5-6)
b= 1—c% ©

For example, let us consider the case of chemical erosion of carbon in a flow of a
mixture of gases, the combustion products of an organic fuel. The energy balance at
the heat-transfer surface, neglecting radiation heat transfer, has the form

A =qwtiwl's y—iwl"s (8-5-7)
where

: 0
i"w_;":w;-l:i-

here i'Ew is the total gas enthalpy near the surface, iz

material in the solid state, and ioz is the total heat of reaction.

W is the total enthalpy of the

The gas mixture acting on the carbon surface has a complex composition, in the /234
general case. The chemical erosion of the carbon under these conditions is promoted
by a complex of oxidative reduction reactions in the surface of the body. The following
can be considered to be the most probable reactions up to Tw ~ 4,000° K:
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04-C—CO;

01+C - C0;
OH4-C— CO+H;
NO+-C - CO+N;
H,04-C— CO+H,;
CO,+-C—2¢0.

(8-5-8)

The total heat of reaction is defined by the formula

‘: = %; Q= 2 (’lei)l’_Z (r:Q:)s. (8-5-9)

=1 i=1
where Qp is the total thermal effect of all the reactions taking place on the surface,

and n is the number of moles of one product or other participating in the reaction.

After relatively simple transformations of Eq. (8-5-7), taking (8-5-8) into account,
we get

iy =+ b8 +q;'—:(z:w—1,(). (8-5-10)

The parameter bi1 is defined from (8-5-5), allowing for the fact that

(c(:)e= m; (CJ)O' (8-5-11)
I=I

where mi/MJ. is the molar fraction of the i-th element, and p is the number of chemical

compounds containing the i-th element.

For example, the reduced concentration (cg)0 of oxygen in the free stream for a
complex gas composition is

co (O)-—-L‘.(O,)-{- 7 ¢ (OH) + 18 co(HO)+—‘ o(NO)+ CO(CO:)+ (8-5-12) @

Here ¢((0,), ¢y(OH), ¢,(H,0), etc. are the weight fractions of the chemically
active, oxygen-containing compounds in the free stream.

From Eqgs. (8-5-5) and (8-5-11) it follows that

, ”‘-=W_“l——‘ (IZP] My [( e — cw (CO)]) (8-5-13)

38 ‘w (CO)

On the other hand, from Eq. ‘8-5-6) we can get
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__ 16 by, -5~
ew (C0) =35 175 (8-5-14)

and therefore

P
b,-,=_":‘.[2 = (cJ).,] (8-5-15)

=t
Here m; is the weight fraction of the chemically action oxygen and M is the molec-
ular weight of the j-th component containing oxygen.
In the first approximation we take q, = 0 in Eq. (8-5-10) and find sw and Tw

Then, by solving the problem of thermal conductivity of a semi-bounded body with a
shifting outer edge and given Tw, we determine q, and, by Eq. (8-5-10), we find iZw

in the second approximation, which is usually sufficient for the case of burn-up of
thermally insulated coatings. In more complex cases it is necessary to solve the
conjugate problem.

Determining iZw’ we find \Ifs from Eq. (5-5-17) and carry out the integration of

Eq. (8-5-1). For the case iEw = const we have
= _"
Re**,, ={ v B (1 +b:) Reow 15 Ty de\™. (8-5-16)
The quantity of burned material is determined by the formula
Jw == powebi, SL ¥, (8-5-17)

where

B
Sf. = Ipge.1s (Re..ﬂw)m

For the case of gas flow in a nozzle the integral of (8-5-1) can be written conven-
iently in the form

Re",,w”—‘—l—'[M T (1 +b:)

D 2 Pre.7y
x (8-5-18)
XRe, I(D)-o,u dx]’ .’
]
where D = D/Dcrit’ Dcrit is the diameter of the nozzle throat section, R, =7?Euf%_—'
w crit

and b is the mass gas flow through the nozzle.

Various heat-resistant coatings are an effective means of protecting the surface of
a body from high heat fluxes. These coatings are usually porous carbonized layers
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filled with material with a high yield of volatiles (hased on phenol resins). Some coat-
ings give off up to 70% (by weight) of gaseous materials when they decompose. The
intense crossflow of gas on the surface of the body reduces the heat flux and, there-
fore, the burning rate of the carbon base. We write the heat flux reaching the wall as

w =qdwitt+qwe, (8-5-19)

where Uy is the heat that goes to heat the carbon residue and Ao is the heat that goes

to heat the gases to wall temperature there too is the convenient place to put the heat
of conversion of the decomposition products, i, which goes to evaporate the water
evolved during decomposition of the resins, the additional decomposition of the heavy
hydrocarbon, etc.).

Thus,
Qwa= fwa liwa+ T — '] (8-5-20)
Then the thermal energy balance on the surface is written as
Qe = fwiby + iw liws + 85 = '] 4+ qwas (8-5-21)

where i' is the heat content of the material at a temperature corresponding to the onset /237
of destruction of the coating material. After appropriate transformations we have

b=l + 00 05 ligg it — i}

. R (8-5-22)
+-:——v‘:’;— (iey — i)

The permeability parameter b{ is governed only by the chemical erosion and is
found by formula (8-5-15). !

The permeability parameter b;'l depends on the yield of volatile substance, i.e. it

is the thermophysical characteristic of the material.

The total permeability parameter, which takes into account the effect of the cross-
flow of material on the heat transfer and is contained in the integral energy relation, is

bu=b'u+b"u. (8-5-23)

The heat content at the wall iw is determined, as before, by the method of succes-

sive approximation. After solving the problem of nonstationary thermal conductivity
with a shifting outer boundary at temperature Tw’ we find the rate of heating of the

material, the quantity of gas evolved (jwz) and Ay * Then we determine Tw in the

second approximation. The further sequence of calculation is similar to the preceding
case. The rate of burn-up of the carbon base is

]w,=b’,-,p.w.5t:. (8-5-24)

191



Since St is defined with allowance for the effect of the overall crossflow of

material, i.e. bi1 =b! + b%’i, formula (8-5-24) shows a substantial decrease in burn-

up of the graphite base with increasing yield of volatiles ithat is, b'{x)'

Figs

ness of the burned layer over the length of the duct.

11

A comparison of the experimental data of Bartlet and Denison on the burn-up of a
graphite duct [126] with the results of the proposed computational method is given in
. 8.20 and 8.21. As can be seen from the comparison, this method takes quite
good account of the effect of such factors as pressure, temperature and concentration
of the oxidizer in the gas flow on the graphite erosion rate.

2032
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1,524
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Fig. 8.20

FIG. 8.20. Dependence of the burn-up of a graphite

duct on time.

method proposed here; the points represent the ex-

mm| 44

2540
2032

1520
1076
0513

{

q
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The curve was calculated by the

periments of Bartlet and Denison [126].

FIG. 8.21. Burn-up of a graphite duct over the

length. The curve was calculated by the method

proposed here; the points represent the experi-
ments of Bartlet and Denison [126].

Since the duct was relatively short, all the calculations were made as for a flat
plate.

In Fig. 8.22 the results of experiments of E. P. Volchkov, E. G. Zaulichnyy,

A. 1. Leont'ev and E. I. Sinaiko [14] on the burn-up of a graphite duct are compared
with the proposed computational method. Shown in the graph is the change in thick-
Curve 1 corresponds to calcula-
tion by the Reynolds analogy without accounting for the effect of non-isothermicity and
crossflow of material by the formula

jw ’=po(x)obnsto,

(8-5-25)

where Sty =0,029 Re:o"“'Pr""; b, = 3/4 (R'O). for the diffusion region, and 4;, = 0,173 for
(K()o = 0.23]-
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Curves 2 and 3 correspond to calculation by the proposed method, on the basis of
this method we get for the conditions being examined

St, = 0,020Re_** Prwe-* (1 4 ,,)~** (_P_w_

Be

.

(8-5-26)
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FIG. 8.22. Burn-up of a graphite duct over the length
1—calculation by Reynolds analogy without allowing
/] for the effect of nonisothermicity and crossflow of

/

3 material on the heat-transfer coefficient; 2, 3—calcu-
lation by the proposed method; experiments of [14]:

2 % ¢ | ® —yow, = 362 kg/(m?. sec); T = 63 sec; 0 —ygWo = 67

1 " J.

kg/(m? - sec); T = 144 sec.

* Ban ¢ — be b
a|x H= o
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FIG. 8.23. Generalized data on mass transfer during
the burn-up of a graphite surface. Curve calculated

by (8-5-27).
Experi-
Experiments of 14 ments of
[126]
Symbols Ol X|e|Z-|m Ofaja
kg/m2.sec 3.8 | 108 | 366 ma.sLav.a la& I
v, sec 1971 50 [ 40| 73 | 43 | &
or
S Pro.v(1°4- by, —
K== (+r:“)‘=°'°29R‘.°'2 (8-5-27)

Pw
v ()
As follows from Fig. 8.22, non-isothermicity and crossflow of material exert an /239

appreciable influence on the rate of burn-up of the graphite surface, and this effect is
taken into good account by the proposed computational method.

All the experimental data of [14] and [26] are compared with formula (8-5-27) in
Fig. 8.23. Satisfactory agreement between theory and experiment can be noted. As

was demonstrated earlier, the relative law of heat transfer for the conditions being
examined can be written as

Ys=¥¥;, (8-5-28)
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where 2 : be \2,
w""(v’&'ﬂ) ' w”(l_ "'crit)'
¥, =

The calculations show that for the experimental conditions of [14] and [126] the effect
of crossflow of material on ¥ lies in the limits of 12%, that is, essentially within the
limits of experimental accuracy. Non-isothermicity has the principal effect on \I/S

and, accordingly, on jw; for the conditions of the experiments being examined the non-

isothermicity (¥:=9,0) reduces the heat-transfer coefficient by a factor of about 2. 5,
and it is not permissible to disregard this effect in engineering calculation.

8.6. Turbulent Boundary Layer in the Initial Section of a Pipe under Non-isothermal
and Injection Conditions

A crossflow of material at the pipe walls can have an appreciable effect on the gas
parameters in the flow case in the initial section of a pipe. This effect can be taken
into account by simultaneous solution of the momentum, energy and continuity equa-
tions.

Let us consider the case of subsonic gas flow velocities at the entrance to a
cylindrical duct with a uniform distribution of all the parameters in the initial section
of the duct. We shall assume that the turbulent boundary layer forms from the initial

section downstream. A diagram of this problem is shown in Fig. 8. 24.

R - 1,

. HHHH&HHHHH\_&HLU&.HHH IARERY] FIG. 8.24. Diagram of boundary-

E layer development in the initial
;'” c—wy =] —r o 2o section of a porous pipe.
(.4 ~ 1 1on
«© . |
AR EE R R R RRARARRRR R R RERRAEI
dw, T .L.ﬁ'_

In the general case the mass flow distribution of the injected gas over the pipe
length and the initial parameters of the cooling gas are prescribed. It is required to
determine the distribution of static pressure, friction and heat-transfer coefficients,
the wall temperature, the concentration of injected gas at the wall and the length of
the initial section.

The continuity equation for these conditions is written in the form

z

Po#s _ & _ 1 __ iw may_ 2 N
4HRe* =&, — 1 45%% Re,,,d\Regi h

8-6-1)

where

Re** ="p,ws3** ', Re,,; Re, ="p,w,,D'p,;

U,=w,/w,,; H=238"/8"" £=x'D,
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Poy» Woy are the density and velocity in the initial section and u, is the characteristic
viscosity, which is constant over the length.

The integral momentum relation can be written conveniently in the following form:

dRe _Re** dx,
dx dx (8-6-2)
7 (Re®) ™ (W 45),

where

- PO °
X = I/Re:l ; b= Po:. Re;l = Revem,

The function ¥ is defined by formulas (5-3-2) and (5-3-3), and the function H by
(5-3-12). The considerable non-linearity of Eq. (8-6-2) does not permit obtaining
an analytic solution in the general formulation. But for some particular cases the
solution reduces to simple quadratures.

For the case b = const and iw = const, we get from Egs. (8-6-1) and (8-6-2)

z 2(F 4+ hm
Rey, BUBC+INTH (FLhT+=
/242
(—¢+ l)"‘ —_
xj [(2+H) ~ (8-6-3)
(—l+|_ l)m _
—(+H—aq Tumml dw,
and \
. _ T4h Zpt—1 el
Re¥= SooeFm+rwsor — 5 (8-6-4)
where
a= U+
b+ H(WFb) *
For b = 0 and m = 0. 25 we get formulas (7-4-20) and (7-4-22) for a pipe with
impermeable walls.
Let us determine the length of the initial section from the condition that the
boundary-layer thickness in the initial section becomes equal to the pipe radius. Then,
Res =L o 2" (8-6-5)
T2 W,
Simultaneous solution of Eqs. (8-6-3) and (8-6-5) yields /243
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— b 143
= . ?+ (8-6-6)
P4h—2 -'T[b(2+H)+H(1F+b\]

The result of calculating the dimensionless velocity distribution (W, = Wo/Wop)s
according to the literature, are given in Fig. 8.25 for three values of the permeability
parameter and for the injection of various gases. As can be seen from the graph,
injection of a heavier gas has a lesser effect on the velocity in the potential flow core,
in that the length of the initial section (for identical permeability parameters)
decreases.

% wor // ! FIG. 8.25. Velocity distribution in the
"/ potential flow core over the pipe length
//‘ for various injection gases. Calcula-

/ K tions by (8-6-3) and (8-6-6). — air-

3 e air; - - - CO,-air; — + — Freon-air;
J ,"/’ . — «. — boundary of the initial section

2 ?/ }2{ e according to (8-6-6); 1—b = 0; 2— b

) i N A’ea',' =2; 3—b = 4.

0 0% 98 17 16 20 26 28 J2

With increasing injection of a homogeneous gas, the length of the stabilization
section increases. Thus, e.g., with critical injection of air into air under quasi-
isothermal conditions and like values of ReD1’ the length of the stabilization section

increases by a factor greater than 2 compared to that for a pipe with impermeable
walls. This factor can be of great importance in processing experimental data in
the initial section of a porous pipe.

To evaluate this effect we can make use of Fig. 8.26, where results are given of
a calculation, by the proposed method, of the velocity w, for injection of a homogeneous
gas under quasi-isothermal conditions at various values of b.

S ™

5] ’ i 4 s FIG. 8.26. Variation of the dimensionless velocity
| :’ over the length of a pipe for injection of a homo-

‘ i ] ’ri geneous gas (the case b = const). —— calculation

J ? o § by (8-6-3); - - - boundary of the initial section

2 Z% 2 according to (8-6-6): 1—b =0, 2—b =1; 3—b=2;

) 7 &  4—b=3;5-b=4.

0 8 03 12 5 27 &6 28 X

Let us consider the other extreme case of constant mass flow of injected gas over
the pipe length, corresponding to the condition

fw/port®o = const.

In this case system of Eqs. (8-6-1) and (8-6-2) reduces to the form
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Re®* /244

Date —'__ -1
di‘e“= 144 kbH,Re**w, (14 H)46 (1 b) By (8-6-7)
o, WembH, + 4H ¥ % (F L b)- ;
= = (w,— 1 — 4H Re™) (47, Re)"", (8-6-8)
Rep,

where fw = jw/Po,@0; b=7,, Re}, Re**m/,,

The relationship between W and Re** can be found by numerical solution of Eq.
(8-6-7). The results of calculations by Eqs. (8-6-7) and (8-6-8) for injection of a
homogeneous gas under quasi-isothermal conditions are shown in Fig. 8.27. In Fig.
8. 28 the results of measuring the velocity in the flow core given in [71] are compared
with the proposed computational method. As can be seen from the graph, the agree-
ment between theory and experiment is satisfactory.
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FIG. 8.27. Variation of the dimensionless velocity
over the pipe length for injection of a homogeneous

gas (the case j_ = k. A const). — calculation by
w oWo
(8-6-7) and (8~6~8); - ~ - boundary of the initial
section.
No. of the curve ! 2 3 ¢ 5 ] 7
Ty Rep, o | ooz | 006 | o1 | 015 02 ’ 0,29
/245
For a duct with an impermeable end face (pwy = 0), the momentum equation can
be written conveniently in the form
o IR
R ¢p — ¥ +b (8—6—9)

3

d Re** e B
U+ =R, 5

For the case b = const, continuity equation (8-6-1) has the form

197



&

,./

A
4
-
. /
7

2 /3

~

FIG. 8.28. Variation of the dimensionless velocity
on the axis of a pipe with permeable walls. Curves
calculated by (8-6-7) and (8-6-8); the points repre-
sent the experiments of [71].

No. of the curve 1 l ? s ¢ l §
T3 ° I . 0883 0,174 0,29 0.3
z
4H Re* =Re, — 4 }' Re,, dz, (8-6-10)

where Rep=powoD/p.; Rew =jw D/p..

Accordingly,

=2 Re -6-
b= F e Re**™. (8-6-11)

Equation (8-6-9), with (8-6-11) taken into account, is written as

d _v+ d2
3%:—-{-(1 +m% £ Re,, iR (8-6-12)
Differentiating Eq. (8-6-10) we get /246
dz 1 d Re**
Rew d—-Re-—D—= e Hm-. (8—6-13)
Substituting this relation into Eq. (8-6-12) we get
W4 b)dRe Wb A
{l+H }dRe +(l+H) S-hLEN) (8-6-14)
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The integral of Eq. (8-6-14) for the boundary conditions Re** = ¢ with ReD =0
has the form

Re** =cRep, (8-6-15)
where

P4+ b

CETPeTrmT AT

Substituting (8-6-15) into (8-6-13) and (8-6-10) we obtain

Rep=d-z, (8-6-16)

where
d=B m_ {4[b@+ H)+ H (W 4 b))ym+:
—22FH (T oym

and

B . Re 1—m

D __ wm -6~
Rew=—2-bW—D, ’ (8 6 17)

where

1l—m

1

im 1
D=gt3(stn) " (2) Hb@+H+H @)™

Thus, when m = 0.25, the mass gas flow through the permeable wall under the
condition b = const increases over the length of the pipe proportionally to X%, Since
b=b¥and ¥ is a single-valued function of b, [see (5-3-2), (5-3-3) and (5-5-7)1, for-
mulas (8-6-15), (8-6-16) and (8-6-17) can also be applied to the conditions b; = const.

As was shown in Chapter 5, these conditions are met when chemical erosion of the
wall material in the diffusion section occurs.

For a duct with an impermeable end face in the case j. = const we have from
Eq. (8-6-10) v

4HRe** =Rep—4RewT;
from it we get

~— 4H Re**
= Re, e . (8-6-18)

Substituting dx/dReD from (8-6-18) into Eq. (8-6-13) and considering that
H = H, /1 + kb), after transformations we get

4 Re**
g Re 1+[4ﬂ#-(1+mmJR—% (8-6-19)
dRep 4H+4H.kmb+;171:_—b'
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FIG. 8.29. Variation of the dimensionless velocity
on the axis of a pipe with porous walls and on im-
permeable end face. Curves calculated by (8-6-18)
and (8-6-19); the points represent the experiments

of [71].
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For the permeability parameter b we have the formula

— .2 Rew possm -6-
b= B Re, Re®**™, (8-6-20)

Nonlinear Eq. (8-6-19) can be integrated numerically, taking (8-6-20) and (8-6-18)
into account. Using relation (8-6-18), it is possible to get the variation of ReD and
Re™™ over the length of the pipe.

w oD .
= p°u° carried out

The results of a numerical calculation of the variation of ReD
0

on an M-20 computer by the Range-Kutta method (for B = 0. 0128, k = 0.05 and
m = 0.25) are compared in Fig. 8.29 with the experiments of A. I. Leont'ev, A. V. /248
Fafurin and N. V. Nikitin [71].

The energy equation (8-4-18), taking (8-4-19) into account, can be written con-
veniently as

DI

x
1—¢'\ 2
Rg._.‘ =§(m) h Regl d (F), (8-6—21)
where ¢’=i'li,, and is the critical enthalpy of the injected gas.

For a given law of distribution of the injected gas over the length of the pipe, the
local values of Re"""i can be determined from (8-6-21).
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Let us consider the case bi = const, which corresponds to the condition iw

From (8-6-21) it follows that:

Rees, ) ,
5 'Re:%dRelu‘,_____l—‘b __B;

L —¢¢ 2

X

—

Rl
XbPre 5’ B,d
1]
Taking (8-6-2) into account, we get

®4b
R = er s e TP

X{(1=h)e ()] [ s

(—¢+|_l)m _ 1+m
‘—(1+H—'G)T’W-)Tl—]du‘.} .

An analytic solution of this problem can be obtained if we set Re** = Re**

continuity equation. Then,
Ren—_-: 4H Re**; 4 Rem (1 4 4G),

_tw_ e, Consequently, jw/9,w,, ==dG'dz.
Poy We,y

where G =

oty |

The energy equation can be written in the form

dRe®, q"*'"Re dG
Tdx b, Dl gz -

Integrating, we get

b
Re"i-_-w :: L RemG.

Taking m = 0,25, B/2 =0.0128, Pr = 1.0 and allowing for (8-6-24) we get

AG*2 dG

- Fa

where

B=aH TE gy

= const.

(8-6-22)

(8-6-23)

. in the
1

(8-6-24)

(8-6-25)

(8~6-26)

(8-6-27)
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The integral of Eq. (8-6-27) is

_ ST
4oV

472

[ G°'+}/_cml/“+1/—

._}/_G.‘.V_+‘/B (8-6-28)

+2arctg f_ vea j”

T_GOI

The law of distribution of injection over the length is found from Eg. (8-6-27):

P AGNT

For the case jw/901W01 = const it follows from (8-6-21) that
*n l—-'li' hd m S
Re**;= 1=+ (.Ref) <—Reg,> (8

or, introducing the dimensionless enthalpy,

0, = e —lw_ (8-

lg—1'

and

Re“{ = Re**Re P

: (8
Re**; = J,Re, * 5
The continuity equation can be written in the form
Re, = 4H Re**; + Re,, (1 4 4j.%), (8

% %k

where we have set Re™ = Re*"i‘. Then, from Egs. (8-6-32) and (8-6-33) we get

- | _10.25__ 0,01285, [ 4H
[hRem,—f} ""W—[e.

+Hg ) ’

Taking Eq. (8-4-21) into account we get the equation
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v, o
e 8o o FIG. 8.30. Effect of injection on the temperature
v/ of a porous wall. Curve calculated by (8-6-35);
Y7 points represent the experiments of [252].
-a‘ = -
2 ikl
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wherek=3'——l.
( ]

For known ¥ and bicrit as a function of wi we get an equation in the desired param-~ /251

eter 8,. The equation is solved gr-aphically or by the method of successive approxima-
tion.

The results of calculating the mean wall temperature of a porous pipe by the pro-
posed method are compared in Fig. 8.30 with the experiments of Yuan and Barazotti
[252]. It is simpler to calculate by the graphs of Figs. 8.14 and 8. 25.

8.7. Gas Flow in a Long Pipe with Porous Walls

Formula (5-2-1) can be used to calculate hydrodynamics and heat transfer for a
gas flow in long pipes. In this case, a one-dimensional model of the gas flow can be
used to obtain preliminary results, and the influence of the crossflow of material at
the walls of the pipe will be taken into account directly in the momentum equation and
indirectly by the laws of friction and heat transfer.

As an example let us consider a flow of gas with constant physical properties in a
long cylindrical pipe with gas sucked through the walls at a constant rate. A diagram
of this problem is shown in Fig. 8.31.

Y
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"
__QQQQOQCQ,AQ:,aAct;AAuQc

2 ? ) FIG. 8.31. Diagram of gas flow in

St— ) T a pipe with permeable walls.
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The momentum equation for a one-dimensional model is written as

%:%pf‘%’— [22b — T, (8-7-1)
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5 @¥27R dR
rD?

where a=—— rp—— 7
LS w2rR dRZI

be taken equal to 1, b=

is the nonuniformity coefficient, which in what follows will

™ _ is the permeability parameter, and is the mean flow

= C1e
»

2
velocity.

From the continuity equation it follows that

m=(l - it) @D (8-7-2)

6, ) aL -

where W, is the gas velocity at the exit from the pipe.

Consequently,
r
b=——m7 (8-7-3)
where
P :’_ _ii _ 4Lcy,
r=1 s I=7p o L=

Taking (5-2-6) and (8-7-3) into account, Eq. (8-7-1) can be written as

d 52 Cre
22 =4l £ [1,52 (1 —rz) — 0,06252°
— (1 —rz)],

(8-7-4)

where 2=r/2, {=x/D.

Distance from inlet, cm
2 X & 0 W 22
Losses at inlet :

PR ASFEE S o am
Qe ’%‘_ﬁ—— FIG. 8.32. Pressure variation over the length
i % N— Nanie of a pipe with permeable walls for various
i RN ' suction intensities. Curves calculated by
& 2 NN LT ? (8-7-5); the points correspond to the experi-
g~ N i ST ments of Wallis [242]: o—w,/w; = 0.68; X—
PR ' 0.45; +—0.231; @—0.
; 3 '

R |.
& i e
@
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After integrating we get

P——_I;. =1 (1,52 —0,0625z* — 1)
1

. (8-7-5)

+ X' (1 —0,752)— -’33

1

The results of calculating by Eq. (8-7-5) are compared in Fig. 8. 32 with the
experiments of Wallis [242]. As follows from Fig. 8.32, the proposed calculation
method to more complex compressed gas-flow conditions in a long porous pipe with
considerable non-isothermicity. In this case it is necessary to take into account the
effect of compressibility and non-isothermicity on the function ¥ in accordance with

the formulas, of (5-4-6). The problem is solved by the methods of numerical or graphic
integration.
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CHAPTER 9
EFFECTIVENESS OF GAS SCREENS

9.1. Effectiveness of a Gas Screen at a Flat Wall under Quasi-Isothermal Conditions y

253
The method of heat shielding with gas screens is widely used in modern engineer-

ing practice. Arrangements of basic gas screen design variations are illustrated in

Fig. 9.1. Other combinations of these variations are also possible. For example,

film cooling, which is widely used in liquid-fuel rocket engines, is combined with the

usual wall cooling. The flow-through section of a solid-fuel rocket engine is usually

made in sectional form with different thermal-isolation coverings, and in this case the

gas screen is dispersed over the surface by the lateral flux of matter.

The basic parameter defining the intensity of the heat transfer in the presence of /254
a gas screen is the so-called gas-screen effectiveness —

0= _L’—_i'V_' (9-1-1)

ig = bwn

where i, is the total enthalpy of the undisturbed flow, iw the enthalpy at the thermally-

insulated wall, and iw1 is the enthalpy at the wall in the initial section.

’ ” Fo. "o, rﬂ
—

FIG. 9.1. Diagrams of principal
versions of the gas screen.

7Y

fw-f(x)

Thus the effectiveness of the gas screen determines the temperature of the
thermally-insulated wall with a screen. As will be shown later, this parameter is
also needed for calculations of heat transfer if a screen is present.

y
rﬂ " rp w,
1 = FIG. 9.2. Diagram of a thermal
* W, %’rw'c; p screen.
OO GG TEE B IS PLPL LSOO PP e T
il W (1), =0
1w
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Consider a longitudinal flow of an incompressible fluid with constant physical /255
properties around a flat, thermally-insulated plate (Fig. 9.2). A section of length x,
is cooled, and the temperature of the wall in section x, is Tw . In the region x>, the

wall is thermally-insulated and the wall temperature varies along the plate, approach-
ing the temperature of the incoming flow. Radiative heat exchange will be ignored.

The energy equation for the region x>x; is written as

d Re‘.r Re..r d (AT) _

—az tar & =0 (9-1-2)
Integrating from X, to X we obtain
Re®** AT = Re** AT,. (9-1-3)
We introduce the thermal screen effectiveness parameter and find
AT  Re* -1-
O=A_I; =—Re“r * (9 1 4)

* %k s . s 5
where Re T, 18 Reynolds number in section x;.

It is obvious that Eq. (9-1-4) will also be valid for a more general case, if the
total enthalpy is introduced in place of the temperature. In the section x<x;, with
Pr =1, the conditions

Or=9; 0**r=~0** (9-1-5)
are satisfied.

In the region x>x the similarity of the dynamic- and thermal boundary layers
breaks down, since the boundary conditions at the surface of the plate are changed.
For the heat-insulated portion we can write

with y =10 q=0.—odL=0: ]
4 Y (9-1-6)

Temperature equalization occurs within the boundary layer only because of turbu-
lent mixing and the intake of gas from the outer flow. In this case the most intense
mixing takes place near the wall, where the derivative dw,'dy is maximum. As a re- @—5—@_
sult, the temperature profile is distorted in such a way that the region with 0T /oy=0
grows continuously--i.e. the range with T » Tw increases. Simultaneously the tem-

perature in the boundary layer approaches T, due to the leakage of gas from the outer
flow, i.e. with

x—>c0 T—Ty—>T, (9-1-7)

(]
<)
=1



The energy-loss thickness, with constant physical properties, is defined by the
formula

With x—>o0, condition (9-1-7) corresponds to the limiting value of the energy-
loss thickness

1
B'"r=§~d!r- (9-1-8)

This maximum possible energy-loss thickness corresponds to that temperature
distribution with which the gas temperature in the main part of the boundary layer is
close to the wall temperature.

Adopting © == w, =¢"” for the conditions being considered, we have, for the region

x< X,
8—"', =~ -8_“ = 0,097.

At the boundary layer separation point, due to the action of the longitudinal pres-
sure gradient, n = 1/2, but nr=!/7, and then 8**r=0,097 and 8**=0,16.

The limits of the quantity 3‘*,, according to (9-1-8), are

with f=0 g‘ormu=0.875; } 19-1-9)

with f=fgp 8%, =0,7.

Tmax ™~

Thus, with any pressure gradient, the relative energy-loss thickness on an imper-
meable, thermally-insulated surface with x—»>co becomes close to unity. This result
is confirmed qualitatively by the measurements presented in the paper by Nichiwaki,
Hirata and Tsuchida [187].

According to these measurements &**r_ .. /0**r,=6, and the limiting value of this /257
ratio is 9.

For the thermal screen depicted in Fig. 9.2, for a fluid with constant physical
parameters and Pr ~ 1, we can assume thatdr=é over the entire length of the plate;
since with x>x the "'scouring' of the thermal boundary layer should be limited to a
region where gw,/dy+0, i.e. the thickness of the dynamic boundary layer.

Then Eq. (9-1-4) is written in the form

= Jyes (9-1-10)

where p=08**r/6** is a coefficient accounting for the deformation of the temperature
field.
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With x—-x,, p—>1, and with x—>o0, ﬁ—»Bm ;

ax
8 [ .

” i e : FIG. 9.3. Effectiveness of a thermal
i gas screen. 1—calculated from
] i\ 7 (9-1-14); 2—computed as per Seban

as — - [214]; 3—computed as per Rubesin
! ‘:\\ J, [205]; 4—test data of Reynolds et al

AN g%___‘
. | 2 Mﬂ [199] .
7 a5 7. 14 18

In the region x>x,, with quasi-siothermal conditions, the dynamic boundary layer
is- developed independently of the thermal boundary layer. From the integral momen-
tum ratio we have

+=(3)" (9-1-11)
Accordingly, with x— o
~ s (3) (9-1-12)
Takipg into account t}}e momentum equation and the conditions Re:;f: =Re*} and /254
B =1, with x = x, we obtain
0~ (1+4n2sm)™ (9-1-13)

According to (9-1-8), for the conditions being considered, 'Bmax =9, and then

~ (1 + 15,5"‘—:‘&)' * (9-1-14)

Flgure 9. 3 presents a comparison of the calculations made with (9-1-14) and the
test results of Reynolds, Kays and Kline [199].

As can be seen from the diagram, theory and experiment are in good agreement.

Formula (9-1-10), extended to the flow of a compressible gas, and taking Eq.
(7-2-14) for Re™** into account, reduces to

®Re, (2% \" yz 1ot
e.—_fn+%(1+m)3"'“ (o) ] p

e Yl

: max (Rct.rl)m+| (9_1‘15)
;_ ;; 3
where ___
2arctg M, VO.5r (K —1) ]°.
V=[,-V__ M, V0.5 /\'_1)]'

F=T,/T";

o]
<D
w



] 1 -1
ﬂmax:"( —E:md&)(.s‘%m(l——m) dE) . (9-1-17)
0 [ :

To estimate the influence of compressibility on B max® V€ take plpo=9*—(Y*—1) ©?
and 0=g". The computed values of g max’ with these relationships taken into account,
are glven in Table 9.1.

Table 9.1. Values of 8 as a
max
function of M

M 0 ll2 3 4 5

Boax | 9 9,2'9.3 10,4 ] 11,5 | 12

NeJ

Thus the compressibility of the gas does not significantly affect Brax’ Conse- 25
quently, in view of the fact that

Re**p =[5 (m+ D ¥, Re, (227",
we have from (9-1-15)

max x,

= [1 +g® "—-L] - (9-1-18)

This formula is derived on the assumption that the parameter $=Twi/T*w, i.e.,
with maximum possible influence of non-isothermicity. Thus the effect of gas com-
pressibility on the effectiveness of the gas screen, with the assumptions adopted,
appears in the coefficient g

max’

= N2

With £—o0, T —T . ¥/¥, — (V_+'_
w— W 4

Consequently

Taking (uW/uW1)m ~ 1, we have
V3 N .
[l+?"‘“< V'4+I\I-'?.il )
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Thus the effectiveness of the screen grows as the intensity of cooling of the initial

section of the plate is increased.

For an axisymmetric boundary layer

» we have from the energy equation:

8
Re**ry |

8= R (9-1-19)
In particular for flow around a cone
(a) With M = 0, Brax = 9,
8=2 [1 + 15.6(‘—";.—"-'—” (9-1-20)
() With M=3.5, 8 =10.9 /260
o= 2 [ 4+19.7 ("——x:‘—)] - (9-1-21)

Figure 9. 4 presents a comparison of the results as computed from (9-1-20) and

(9-1-21) with the experimental data of F.

H. Durgin [135]. The proposed method of

computing the gas-screen effectiveness can be extended to the case of an arbitrary law

of change in velocity at the outer limit of
taking (7-2-52) into account, we have, in

the boundary layer. From Eq. (9-1-4),

the general case:

¥ _ -
bax o " ' (9-1-22)
92= l + 0::’" = 3 1 m+)
IS n [ ' pw \™ K= _
Re, \_z)wm (;.:) va—uy  dx
and for the case of gas flow in a supersonic nozzle; /261
6,=)1-+ ot Rep Dt
(9-1-23)

L

|L—-§k|

(

.

X

Pw
oo

) 1
m | T Tm¥t
) Dm+ieTt dz

Pw

e

m4 1
m
) dx
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) 1T I
( |
¢ , O Jﬁ i FIG. 9.4. Effectiveness of thermal screen
]1 : [ : at the surface of a cone in a supersonic
! l P flow. 1—Calculated from (9-1-21); 2—
Wl | Tt \ . calculated from (9-1-20); Points—tests of
-, A N F. H. Durgin [135].
i A2
e
e l L I, :
g 7 xX/x 4
where
9 . i.w - iw: -
L P — W

i
wZ
enthalpy of the gas at the cooled wall in the section X;.

is the total enthalpy of the gas at the thermally-insulated wall; iw1 is the total

The parameter V= iy</i*w appearing in ¥. is related to the screen effectiveness
by the formula

$v=1—8(1—y). (9-1-24)
Equations (9-1-22) and (9-1-23) are solved for iii by successive approximations.
The magnitude of the coefficient Bpax S8 be taken from Table 9.1 (first approxima-
tion).
9.2. Gas Screen Created by Injection of Gas Through a Porous Section
Let us derive the formula for the effectiveness of the gas screen created by in-

jection of gas through a permeable section of length x; (Fig. 9.5). Equation (8-4-20)
is written in the form

d (Re**,Ai . .,
—L;,—i)—=Rew(x w—{)
From this, for the case iw = const, we have /262
Re**;, = Rey, (1 +K). (9-2-1)
where

, =
Rey, = - Slwdx;
Pl

iy — i’
K=—2—.

. -—f
Fw fw
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Ay " ",
1% o
}(‘ < 3’ <l | FIG. 9.5. Diagram of gas
— o :
e L — screen with a porous sec-
et Tw tion.
JwT
4

For the case M << 1 and Cp = const.

w,—T'
K —T.—Tw, °
. _I1+K, ~1-
Since G_WI_(—’ we have from (9-1-4)
R ‘.
K+1=K+1) g (9-2-2)
or, in view of (9-2-1):
Re”
K+41= Revour (9-2-3)
In the region 0 < x < x,, Re*,’;, ~ Re™, and in the region x > x,, Re:;* = gRe**
From the momentum equation we have
. 1
Re** = [(1 4 m) g Re,, +Rey"*" |, (9-2-4)
where
Wy
Re,, = —*(x—x)).
With X — oo, ReA ~Rex >> Re*¥ 1» and /263
3 B ' (9-2-5)
- _fmax o el -2-
K1 — gm2x (1 4 m) 3 Re |77
Taking n =1/7, B/2 =0.0128, m = 0.25 and Bax = 9 We obtain the limiting
formula
Red®
K+1-033 X (9-2-6)
wi

For the entire region from x; to o, we have
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FIG. 9.6. Effectiveness of the gas screen with a
a porous section. Straight line—calculated from
from (9-2-6); «, O, ®, =—test data of Nichi-
waki et al [187]; + —data from V. P. Komarov
[51].

0,25 Re =0
=11 ax (9-2-7)
[ + Re:]_?.s(l +K|)' 23 ]

Figure 9. 6 presents a comparison between the calculations using (9-2-6) and the
data of Nichiwaki, Hirata and Tsuchida [187] and V. P. Komarov [51]; Fig. 9.7 is a
comparison with the data of Goldstein et al [144].

For a flow of compressible gas, taking (9-1-15) into account, we have

6, = l+ ’l;a’; B (1 + m) Rey,
T (1 + K,)m+19}__+m opge. 18 Re;nvﬂ
z ! ' (9-2-8)
" KT iem | T AT
e () v )
x
For the gas flow in a supersonic nozzle
9 == l pln;‘g‘x B(l + m) Reoo
Sl OL* ™ (I + K)m+t 2Pr*T Remyipme
! (9-2-9)

I Pw \™ jm-1gm+! T me
nga)(l"u) b e: d!}
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FIG. 9.7. Gas screen effectiveness
with a porous section. Curve—cal-
culated from (9-2-7); experimental
points—from the paper by Goldstein
et al [144].
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Equations (9-2-8) and (9-2-9) are solved for 8, by successive approximations.
For a preliminary estimate we can use the formula

T 1 -3

1 0,23 K—1
0.25Remwm,<“ﬁ) XWMU(I._U:)- 4z

EA (9-2-10)
0, =|14+ -
: (1 +K) # Rep.
and for the supersonic nozzle
L \% _ —08
o<1y 2B%wve (1) 7 1
=il . (D)™ *dz! - _o_
+ 4+ K)o.xl Re;].?]SD,':s S M (D) dz (9 2 11)
s
For the flow around a flat plate we have
0.25Re,, ( Bwi )"“l—"',
=1 + ¥, riyrear™ (ww) |
0 . (9-2-12)
ey (x — x,), ¥, — .
where Re“ = ———P“ H ts (V—_—\ﬁ-{- 0 ) .
w
4
” e \‘~\v.<ﬁ%$’!:ﬂ: A AA/
a B ~4{ FIG. 9.8. Effectiveness of a gas
as e - zo— screen with supersonic flow, 1—
2”\\ OA b Calculated from (9-2-13) for M
SR oKt = 2. 9; 2—calculated from (9-2-7)
® Sty : (M — 0); test points from the
~N paper by Goldstein et al [256].
T~ F
N
w [7 3
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Figure 9. 8 gives a comparison between formula (9-2-12) and the data of Gold-
stein et al [256]. The tests were made with T /T* = 1.0. Then formula (9-2-12) is
conveniently written as wow

__‘ WyRe,, oo .'“l_.'. _o_
8= 1 0.2 iy Re e (T) [ (9-2-13)

where ReS = iji/us, u is the coefficient of dynamic viscosity of the injected gas at
T'.

As is evident from the figure, the experiments and relationship (9-2-13) are in
good agreement. It is interesting to note that the screen effectiveness improves con-
siderably with an increase in M-number.

9. 3. Gas Screen Created by the Injection of Cooled Gas Through a Slot

The gas is injected through a slot of height s with velocity w, at temperature T,
(Fig. 9.9). The physical properties of the main and injected gases are taken to be
alike and constant.

o %
o A ’ :——E! :}! |
= J © oy ?7’ FIG. 9.9. Diagram of a slot
T == gas-screen.
L RN TSN WO .25 % e e WA HVAAANA AL AAAAA
© -;—i——J | T
Tws

In the section 0<x< x; the plate is washed only by the injected gas, and the plate
temperature is equal to the temperature of the injected gas, i.e. TW = TWl =T,.

Boundary layer heating due to the mixing of the main and injected flows begins to set
in with the section x ~ x,.

With x—so00 the dynamic boundary layer no longer depends on conditions in section
Xy, and withn =1/7

3", o =0.036x Re*’. (9-3-1)

We can write the following balance relationships for the x,-section:

A
;C, pwTdy =C,p,w,T,s 4 C, pewiTo (h —s); (9-3-2)
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A
§ pwdy = p,w,s + pw, (h — ). (9-3-3)
For the conditions being considered (p, = 2,.C,, =C, ), we have /267
3, =-:;: s. (9-3-4)

Substituting (9-3-4) and (9-3-1) into (9-1-10), we obtain

8, — TR (2. (9-3-5)
where Re_ = wis/vs.
With g = 9 we have
max
02/ @S \**

8,.n—3.1R (Tr) (9-3-6)

For the region x, < x < oo we find:
0~ [1+0,25 Re.""”—"""’l‘a——s"‘ll"". (9-3-17)

8= in the region 0<x <.

Using the known relationships for a free turbulent jet [1], to a first approximation
we can take, for w; < w;

-~ (0107 40037 Z1) T 22 (9-3-8)

w, — T,

In some instances the section x; can be neglected--i.e. we can get x—x,~x, and
thereby create some margin for the gas screen effectiveness. Then we obtain a simple
computational formula

8= (1 +0,23Re " ~i> (9-3-9)

A comparison of the gas-screen effectiveness computed from (9-3-6) with the tests /268
of Papell and Trout [193], Hartnett, Birkebak and Eckert [152] and Seban {214, 215] is
given in Fig. 9.10.

The proposed method can be extended to a flow of compressible gas along a flat

wall. In this case Reu»mo____ PEeS g

oo

Re" o™ (9-3-10)

T -
8~ [1 00163 s
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& 3 and Trout [193]; ¥ —tests by
Sevan [214, 215].
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where W is found from (4-1-2). For the general case of flow over a curvilinear
surface we have

w, U (1—Uy*"q

]
0.016§"2* W, ( . > Rese

By W

o0 (9"3"11)
iad Ry Reqeo™™*
and for the gas flow in a supersonic nozzle:
0-0163“”‘1‘“ ( 1 ) Re“ x 6.8
5

It should be noted that all formulas obtained for the gas-screen effectiveness can /269
also be extended to the injection of a foreign gas. In this case the gas-screen effec-
tiveness is defined by way of the enthalpy of the gas

Q== "W (9-3-13)

b —dy

With Sc = 1 similarity should exist between the distributions of enthalpy and total
concentration of the injected gas, and hence

o de—"i% — € —C*w Ll
8= fo—iwi  Co—lwi (9-3-14)
From this
C‘w =Co—ei (Co—Cwl) . (9—3-15)

where c:v is the concentration of the injected component at the thermally-insultated

wall; Cwi is the concentration of the injected component at the wall in section x,.

The specific heat of a binary mixture of gases at the wall can be expressed as

C*,, ==Cp,C" +Cpo (1 —¢*,) =Cp+ (Cp, — Cp) *w- (9-3-16)
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From (9-3-13) we have

C C*rT*
8; = "°r'_, oy (9-3-17)

“Fw!

From this, taking (9-3-16) into account, we have

. To—T% __ 8 (CroTe—CpyTwi) — (Cppi— Cp) Tuc® W
e‘—_T._TWI = [Cm+(CPw|—-CN)C w] (T "'TW|) (9_3—18)
In the case of injection of a foreign gas through a tangential slot, cg=0,¢c =1,
T —T C —C ,andfrom(9318)wehave wi
wi pwi
8.Cp,
9‘ - 0‘ (Cp, — Cm‘ + Cp) (9_3_19)

The integral energy relationship (2-4-7) for the region x>x;, where q, = 0, is
written as (qv =0, jw = Q)

d (Re**di) _ 0

ds =y (9-3-20)
From this /270
_ Re**,, — Re**, o
ei—Re"( 3 Re.t ’ (9 3 21)
in which 8, — ,Wu wu __ Pee8t W3t e | 2
case 8= i Retr = e Rere, <20 T 2 MG

i§, is the enthalpy of the gas at a thermally-insulated wall

Taking into account Eq. (7-2-15), we obtain a formula for the gas-screen effec-
tiveness in the general case:

_— m+1 L N
8, = S 4+mp (Re..‘ ),,.+. £ (») , (9-3-22)
where
g | 2arcte M, V0.5r(k—1) ]
(V¢+ 1YMVO0.5r(e—1)
in which

\-5.=iw/"'w

The parameter Re?* i * is established as a function of the mode of setting up the gas
screen:
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FIG. 9.11. Screen effectiveness with injection of
a foreign gas. Curve—computed from formula
(9-3-15) with ¥ =1.

Symbol Injected gas | Reference | Type of screen
® Helium {15t Porous
O Helium a3 section
F:;il:-g > 2

(a) cooled portion

Re“i.=[ (m+ 1%, (Pw' ; '"Rex.]o'.:

(b) porous section

Re“il = Rewn (1 + K,);

(c) injection of gas through slot

Re**; P =

For the subsonic gas-flow region, Eq.

e._{1+025

(R"M

PaWy$
oo

(9-3-22),

“(

By i}

for g =9, is written as

Pw | g r".

e

(9-3-23)

(9-3-24)

(9-3-25)

(9-3-26)



An accurate solution of the problem can be had by the method of successive /271
approximations, since the function ¥ depends on ©;. In addition, we must obtain an
expression for the function ¥ in the presence of a gas-screen, which will be done in
Section 9.7.

However, for practical calculations we can take, as a first approximation, ¥= ¥,,
and obtain the limiting value of gas-screen effectiveness under the conditions being
considered.

Figure 9. 11 presents a comparison between formula (9-3-15) and the test data of
E. P. Volchkov and E. I. Sinaiko [15], Goldstein et al [143] and Burus and Stollery /272
[257], in which the concentration of injected gas was changed at the wall with different ——
methods of setting up the gas screen. The curve corresponds to the calculation of 6;
from Eq. (9-3-26), assuming W=1. As canbe seen from the diagram, satisfactory
agreement exists between computed and experimental data. Better correlation can be
attained if the deviation of ¥ from 1 is taken into account in (9-3-26).

9. 4. Multi-Slot Injection of Cooling Gas

In many cases of practical importance, a mult-gas screen must be used. Possi-
ble arrangements of multi-slot- and grating-injection are shown in Fig. 9.12.

. y I
/ L ///,I.r/
prmdy - d':i pavelz | 4% .

Y u FIG. 9.12. Diagrams of multi-slot (a)
PoroTs
— © and grating (b) cooling.

”/”/0;/; /A,// ASROE000]
)
)

b)

Consider a uniform turbulent boundary layer of gas with constant physical prop-
erties in a given temperature interval. Cooling gas is injected through a series of
slots of width S;, S, ... Sn’ corresponding to temperatures of Ty, Ty, ..« Tn and

velocities wy, Wy, ..., W Each slot has a zone X, Xy, « vy X, within which the

wall temperature does not change and is equal to the injected gas temperature. Heat

is not transferred through the wall, and its temperature is an unknown quantity that

varies with the coordinate x. The wall temperature beyond the first slot can be found /273
from (9-3-7). The problem is to find the wall temperature beyond the following slots. ——

The energy-loss thickness in the section of the second slot is:

To— T s
8%y = m;5, + .T.—;:’ %) (9-4-1)

221



where m,=p,w,/p,wy;

- -]
_ pw T,—T
(8*',.),—-i Pelle ( T'_T.Wt )dy
is the energy-loss thickness in the section above the second slot. From the energy
equation:

T.—Ty;, — 8",, .
To—T, _ @), (9-4-2)

where 8ri=ms:is the energy-loss thickness in the section of the first slot.

With (9-4-2), we have from (9-4-1):

T.—T, 323 r._‘rl -4 -
3%y = mys, + 2= T 8 =ms, + = ms,. (9-4-3)
Hence

TO_rn—l ~p®

8"”'=m"s"+ Te—T, & Tn—1 (9-4-4)

or

Ty—T,..

Gur’I:mnsn-l- —T.__—r-'m,._,s,._, (9 . 5)

To—T,. T,—T

R =t b SR A i Ay DS

From the integral momentum relationship (for m = 0.25 and B/2 = 0. 0128) we have

A= =1 4001631, (9-4-6)

where y = x/i**, Re?*.

A comparison between (9-4-6) and the tests of Hartnett, Eckert and Birkebak [152]
and Seban and Back [216] is given in Fig. 9.13.

The momentum-loss thickness in the section above the second slot is
@), = [a;"-“-;- 0,016/ —“t,;)""]"' : (9-4-7)
\*d

and the total momentum-loss thickness is

8 =ris, (1 — T) + @) (9-4-8)
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o Hence

O
4= ado

2 = -
49432 s_ ' x 3 (
PR S = MpSn
7 T _gqg*"’j/[ 8, Reg? )

¢ S5 80 2 J 4 6 8100 0

)+(«u (9-4-9)

A first approximate analysis of the effec-

FIG. 9.13. Change in momentum- tiveness of thermal shielding can be taken as

loss thickness over the length of a

plate with multi-slot injection. 3 =ms, (l — %:'-) +m,s,(1 — 2 ) +...
Curve—calculated from (9-4-6); * *

s —data from Hartnett et al [152]; +m,.s,,( :" ) {9-4-10)
o. a. o—data from Seban and Back *

[216].

In this case the gas-screen effectiveness
with multi-slot injection is calculated from the
formula for a single slot. The difference consists only in the determination of the ini-
tial parameters of the boundary layer, which are calculated in the cross section of the
n-th slot, taking into account the injection of coolant through all preceding slots in
accordance with (9-4-4) and (9-4-10).

In particular, for the power-law profile with n = 1/7 we obtain

Re“ oal Re..Ax e 107 A LA Re..Tn )02 e
_[& - (ﬁ—.—) —1} (W . (9-4-11)

\
)
3
o

where

Re**, = [Re, > 4+ 0016 Re,_ |"%
Re**,=[Re™® 40016 Re, |
Reflx = [0'016 ReAmlo" = R\e"

For the case

B = W, = = Wy,
T.=T‘ = - Tnv
$,=S,= =S,
we have
8, = nms; 3**, ==nms (l — :: ) (9-4-12) \/
Equality (9-4-11) reduces to
—_ 1 f .
e—(l—-{»ﬁm-)—'-—'—‘ ‘(1 +62,5K 1) [,l

(9-4-13)

\ .3

+625 (1 — -:—:)""K-* ]""'—1 1
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4 ol e T 117
f =Nk - FIG. 9.14. Generalization of test
X ‘m data on the effectiveness of the
§ a YN b4 - i i— iniec-
‘a\.‘t = gas-screen with multi-slot injec
' PR 0 tion. 1—calculated from (9-4-14);
RSO 2—computed from (9-4-15); that
J xx-%Q8
p M?- AN data points with 0 < ws/w0 <1.33
2 N 'A: from the paper by Chin et al [144];
N number of slots: o—1; 0-2, +—3;
4—4; X—5; ao—6.
4’41.34 §410 2 J4 580 2 3

where

Equation (9-4-13), as shown by E. P. Volchkov [15], can be satisfactorily
approximated by the formula

0= [(l + _%)o.m_ ! ]"(l —0,016K)-*-* (9-4-14)

with WS/Wo << 1 and
6= [(1 + ) -1 ]"'(l +0,016K) -1 (9-4-15)
with w_/w, =1.

Figure 9.14 presents a comparison between the experimental data of Chin, Skiwen /276
and Burgraff (114] and the computed results using (9-4-14) and (9-4-15). Those modes
were used in the analysis for which the energy-loss thickness due to the injection some-
what exceeded the initial energy-loss thickness due to wall cooling up to the first slot.
Reference [114] also contains measurements of the gas-screen effectiveness with the
injection of a coolant through a grid-like panel (see Fig. 9.15).

Under these conditions the parameter K is found from the formula /277

p At

Ko=(t5)" Re,. (9-4-16)

where G is the flow-rate of coolant per unit width of surface.

As can be seen from Fig. 9.16, the calculated curves encompass the entire range
of experimental points, even in such a complex situation.
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FIG. 9.15. Effectiveness of gas-screen with the in-
jection of a coolant through a tangential grid. 1—
calculated from (9-4-14); 2—calculated from (9-4-15);
Points- test data from Chin et al [114]; number of
rows of slots: & —2; ® —4; +—6; 8—8; X—10; 4a—20.

9. 5. Effectiveness of Gas-Screen at a Rough Wall

In a paper by E. P. Volchkov and V. Ya. Levchenko [12] it was shown that the

proposed method of calculating the gas screen can be successfully extended to a rough
surface. In this case, formula (9-3-9) is written as

8= [1 + 0,254 R"—‘] (9-5-1)

1.3
Re,

_ “BxA
A=+ e T (9-5-2)

where A is the roughness height.

Figure 9.16 presents a comparison between the test data of E. P. Volchkov and
V. Ya. Levchenko [12] and formula (9-5-1). The tests were made on a tubular surface
in the range 0.23 < m < 1.0 and various slot heights (2 < s < 13 mm).

In the case of a fine~grain surface, for the region in which the coefficient of fric-
tion can be assumed to be constant, we have

;--_—_(92'—- x (9-5-3)

Substituting (9-5-3) into (9-1-4), we obtain

x -3
0~[l+4.5€r E)] . (9-5-4)
Strictly speaking, the coefficient of friction on a rough plate varies over the length, /278
since the boundary layer thickness changes. If we use Schlichting's formula FASKA-
- EAY 9-5-
C. = [287 +1581g (5)] ™ (9-5-5)
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we find

Hence

9.6. Convective Heat Transfer with a Gas Screen

a«-=5 0.5 [ 2,87+ 1138 Ig (%) r"‘dx. :

mS

6=

4.55 [2.87 +1.581g (—f—)]""dx

Comparison of formulas (9-3-10) and (9-5-7) shows that the effectiveness of the gas
screen is less on a rough surface than on a smooth wall.

alé 5 |
5
‘ “Ac' 4.,(.
S 3w,

& o
2 ‘:?\;'.n

r}? .

b [ ]
”_, FA'Akoc
8 £
s .]Reax
4 e
s 807 2 ¢ 680 2 4 6 810°

surface. Curve—calculated from (9-5-1):
Points—tests of E. P. Volchkov and V. Ya.

Levchenko [12]; height of roughness in all tests
A =13 mm; height of slot, mm: o0—13, A—10,

A—6.5, 3.5, X-—2,

FIG. 9.16. Gas screen effectiveness at a rough

(9-5-6)

(9-5-7)

Usually the gas screen is used in conjunction with surface cooling and one must be
able to determine the local coefficients of heat transfer for these conditions. The inte-

gral energy relationship for the region x > x; can be written as

where
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(@ —To) 8, 4 T —T)3 ) =

9w .
ZCpy %

(9-6-1)
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.l::

5t .
FIG. 9.17. Law of heat transfer in
Ie py: . the presence of a gas screen. Line—
' 0‘&? : calculated from (9-6-6); Points—
34 R . tests of V. P. Komarov [51] with
— — Re,. and St established from (9-6-2)
£/ |1 iR | T

25 27 29 37 3% Is 37 I3 and (9-6-5).

3
s _ [ @ r—-r, e
_8 ”_jp,:z. (T‘W—T.)dy' (9-6-2)
[+]

Here T' is the temperature at a given point at the boundary layer at the thermally-
insulated surface; TW is the temperature of the surface.

In accordance with Eq. (9-1-2)

d S ) .
“’;-[(T’w—' )& 71]=0' (9-6-3)
Hence
dRe*; | Re; d4(AT*) —PRe st —6-
dx AT dx L= (9-6-4)
where
—_— = . —T -6—
St'—ngp.:._\T" AT*=T,,—T*,. (9-6-5)

Thus the integral ener’gy relatiogs for the heat-transfer surface, with a gas screen,
keeps its usual form if AT" = TW—TW is substituted in place of AT.

We assume that the law of heat transfer in the form (2-6-4) is also valid for the /280
conditions being considered, if **r is defined by (9-6-2) and St, by (9-6-5), i.e.

B p—mp . -6-
St.=TRe,. "Pr-". (9-6-6)
Figure 9. 17 shows a comparison of (9-6-6) with the test data of V. P. Komarov
[51].

Figure 9. 18 gives the distribution of temperature over the boundary layer cross /281
section at a plate, with a step input of heat, as obtained by E. P. Volchkov [15]. The =———
ratio of the heat fluxes at the first and second steps came to 0.3 < qu/qW2 <7.0. As

r—-T1

can be seen from the diagram, the temperature profile in coordinates S oy
w w

=f ( 6—.%) is in agreement with the usual power-law relationship.
A i
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FIG. 9.18. Distribution of temperature
over the cross section of the turbulent
boundary layer with a step supply of heat.

—— power-law Je=T
FomTy

= 10715y A—

treatment in variables -—'f'.'j'f——=r(wa"n);
w

B—treatment in variables ,..r'—:; =1wisr)
w w

Points—test date of E. P. Volchkov [15].

Symbols © Ole |l ml O
gy, = const w1/ qw2 =6
2% o1 | om | o | om

Figure 9.19 shows a comparison of the results of calculation using (9-6-6) with the
tests of E. P. Volchkov [15]. In Fig. 9.19a the test data were generalized in the usual

way, and here, with qw1/ Qs > 1 the test points deviated considerably from the calcula- /282

tions made with (9-6-6). On introducing the equilibrium wall temperature, all of the
test points fit relationship (9-6-6) (see Fig. 9.18b).

Figure 9. 20 illustrates the test data of E. P. Volchkov and V. Ya. Levchenko [12]
on heat-transfer at a rough surface with a gas screen, as processed similarly. As
can be seen, the introduction of the "equilibrium' temperature allows generalizing the
heat-transfer data at a rough surface as well. It should be noted that without a gas
screen, at this same surface, the authors obtained the formula

Nuy;=2,6 - 10—°Re,, (9-6-7)
which is correct beginning with x/A>6.
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6
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\\\%oo
2 S B
.* ’Jp ' FIG. 9.19. Law of heat transfer with a
add step input of heat. Straight line—calcu-
’ - Re; lated from (9-6-6); points— tests of E. P.
lchk 15]; o—0. - @—
¥ 2 ¢ 580 2 4 6an Volchkov [15]; 0—0.3 <q /q_ <1; ®
a) 3.1< qu/qWz < 6.7; a—computed with
;” Sty 02 AT = T Toand 6**T according to (2-4-3);
b—computed with AT = T_-T and 6**
s Iy P w T -
’ S Je 0 by ol according to (9~6-2).
M S P
.‘M 8o
2 —
’ Res™
vc 2 ¢ 68m 2 ¢ 6
b)
r)
% s
')
4 FIG. 9.20. Heat transfer at a rough
surface with a gas screen. 1—calcu-
? 7 lated from Nu_ = 2.6 X 1073 Re 0:8;
~ 4 X X
¥ Points—data from E. P. Volchkov
a and V. Ya. Levchenko [12]; @ —
§ T‘a&r without screen; o—with screen
¢ o (ws/wo <1).
A
27l
”; p V4
') [
4 ﬂe,
0 2 4 5805 2 4 5810° 2 4
The integral of the energy Eq. (9-6-4), with (9-6-6) taken into account, has the
form
_ 1 m+4+1)8
Re**, = To—Tw { Ipye.Ts
[o- =7
. wi
- . (9-6-8)
o, To—=Tw ™ = o e omsl AT
xReLj[e—,.'_ rle dx+ Re*, 77 |

x
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Taking into account Egs. (9-1-14), (9-2-7), (9-2-10), we find Re*,"i, from (9-6-8)
and the local values of St from (9-6-6).

9.7. Effectiveness of the Gas Screen and Heat Transfer on Chemically Reacting
Surfaces with Tangential Injection of an Inert Gas into the Boundary Layer

As has been shown in Chapter 8 in the calculations of heat- and mass-transfer
processes on chemically reacting surfaces, the non-isothermicity exerts a substan-
tial effect on the coefficients of friction, heat- and mass transfer. It was demonstrated
in Section 9. 6 that the power-law profile of the dimensionless temperatures is pre-
served with the introduction of the equilibrium temperature under quasi-isothermal
conditions. It may be assumed that the relationship

i— i

l—.;:..—;——.—. (9"7'1)

Vw—iw

will continue to hold under even substantially non-isothermal conditions. Here i is the
total enthalpy of the gas at a given point, i' is the total enthalpy of the gas at the given
point with the development of a gas screen around the thermally-insulated wall (qW =0).

With barrier cooling of the wall, when 3i/ ay)W = 0, a most intense turbulent mix-

ing takes place in the near-wall region, where the velocity derivative is maximum.
Therefore enthalpy profile distortions take place in such a way that the region in which
(2i/2y) = 0 grows as the boundary layer develops.

Thus as x—oo0, i"—=i*., and in this region equation (9-7-1) takes the form /284

8= i=lw _ (9-7-2)

O~ iw

With this relationship, the expression for ds from (2-1-12) reduces to the usual

form
i
* e s‘o . dE
h/& T °—‘Sl/ ,, (9-7-3)

&

It should be remembered that the Stanton number appearing in ¥ is defined as

—_ G
St= e (% — i)’

where 1 is the enthalpy of the gas or a thermally-insulated wall with a screen present.

As Re—»oo, Br—>1 and we have

1 — |
Jl/_%if_da=jl/5t,5.£ﬁ_=z. 19-7-4)
§ P 13
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The right-hand side describes the "standard" boundary layer and represents a -
constant Z, independent of perturbing factors. For "'standard" conditions ¥ = I, §=§o, p=1
and Z = 1.

Thus the limiting law of heat transfer for the non-isothermal boundary layer of a
compressible gas, with a gas screen, on a permeable surface, has the form

1 1
. = ds P -7 -
LA (JVT?:&)- (9-7-5)

The approximation of the heat flux profile over the boundary layer cross section,
with a gas screen on the permeable surface is retained in the form

lﬂn

=1406"9, (9-7-6)

-

where br = jw/ powSt is the wall permeability parameter in the presence of a gas screen;

here jW is the transverse flux of matter at the wall. The gas density is related to the

parameter ® by the known relationship (for M < 1) -__/ 285
2 _Mw T [$1+ (1 —¥) 8] -
o Mo Ty (W (=)0 F (1 —)0] (9-7-7)
where
—_— lW- v CPw. r __.".w.
?:_W' %_C.va' Yy = M

For gases of like valency

p_Mw T 1
"= M, T h+(—e" (9-7-8)

Here M:, and T:‘v are the molecular weight and the temperature of the gas mixture
at the wall in the absence of heat- and mass-transfer (qw =0 and jw = 0).

Substituting (9-7-6) and (9-7-8) into Eq. (9-7-5), we obtain the limiting laws of
heat transfer for a reacting wall in the presence of a gas screen:

(8) With ¢, <1

My T, 4 V= +o)+Ve, 1 -
Y= 7, =0 [‘“ Vieon+ Vg |5 (9-7-9)
M1, 1 1+ VT3], e
b=t fe L [ml_y'l_“] ; (9-7-10)
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(b) With ¢,>1

MW To 4
TAM, Ty bt —1
I Pt A, (9-7-11)
X[arcig ‘/ ™ 5° +20) --arctg ‘/"I;_'—*lj V
1 (A d)
M Te L 2—4,\?
D it WM, T G =T (arccos-T} . (9-7-12)
For an impermeable wall:
M T 2 ? a
Wg__jl—.— r:\\ (W) . (9 7 13)

Thus the limiting la}kws (9-7—9);(9—7—13) differ from those obtained earlier by the
presence of a factor (MW/MO) (To/TW) which also accounts for the effect of the gas

/286
screen on the relative laws of heat- and mass transfer and on the boundary layer dis- -
placement parameters. The values of the parameters Pi» M* /M, and To/T:v are
found from the formula derived earlier w

ReA 1,887 -900
=[13 090502 (ﬂ) . -
6; [ + 0,2 RIS \ R, (9-7-14)
where
— io - i.w (El)o - (‘-l)‘h
8= = e — (s
With injection of an inert gas through a slot
(o) *w = (Co)o (1 —©)). (9-7-15)
The integral diffusion relationship at a reacting wall, with a gas screen, can be
written in analogy with the energy equation in the following form
d (Repdi) w
— iz Yewe RCL=SlDReL. (9-7-16)
where
L Po“-'oa.l; .
Ren - tee ’

PeWs | (Feder — (F1) "W

aooD___' S pw [ (#:) — (F0)* ]dy;
o

Ac

= (zi)w - (éi)’w;
2=x/L;

Re == &‘L
L [T ‘

Here & is the concentration of the i-th component at a given point in the boundary
layer at a non-reacting wall.
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Taking the diffusion equation into account as written for the wall conditions

. . ¢
liw == Jw (¢i)w — pD (0—;) : (9-7-17)
w
we obtain
fw__ .. )
St Iw [H_ 'lw]
D= m (9—7—18)
We introduce the diffusion parameter of the permeability
; . iw Fow — Eiw
b*, = e Rt (9-7-19)
w W

Let us consider the burning of a graphite surface, and, by determining b;k in terms
of the concentration of carbon (ai):v =0, jiw = jw’ we find

{ ~ b*,
b.l = %’cﬁ .or (C(.)w ZTb'l- (9"7—20)

We establish b’; through the oxygen concentration jiw =0 and obtain

b. p— (ﬂ)'w —_

=1, (9-7-21)

For the diffusion combustion region, where the reaction C + O —CO takes place,
we have

€ =35 Ceodwi Cohw =12 G ) (9-7-22)

Here (aco)w is the concentration of CO at the wall.

From Egs. (9-7-20), (9-7-22), taking (9-7-15) into account, we find the perme-
ability parameter at the burning graphite surface in the presence of an inert gas
screen:

. Cchw ~ » 3 =
B =5 € w = 5 ol (1 — 8)). (9-7-23)

The integral equation of diffusion is conveniently written as

dRey  Rep 4 (a:

T 2 Tl =1, % (1 4 5% Re,. (9-7-24)
In analogy with heat-transfer we find the law of mass transfer as
B e~ -n [Bw\™ 7
Sty=-2 Re" ™Sc (:) : (9-7-25)
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We integrate and find /288

%
1 |Bm+1 Pw\™
Re.-,,__re.[ s [ Re, ()
[}

. (9-7-26)
XE(1+5*) AZ"‘*'dx]”'*' :
The intensity of burning of the graphite surface is defined by the formula
jo= 6% 2 Re, ""sc™" (Ppi)”‘ Yoo, (9-7-27)

where ¥ is found from (9-7-11).

In the experimental determination of the law of mass transfer the local values of

Re*]*) are found, in analogy with the thermal layer, from the formula

x
a+o0) ficax
0

. (9-7-28)
ReD = od*y !
and the Stanton number from
Stp=— —C__. (9-7-29)
Yo@s0™,

If the change in gas parameters over the length is ignored in Eq. (9-7-26), for-
mula (9-7-27) reduces to

Je__b® St—b*,.0,020Re "2 Sc Pt (i"-) (9-7-30)
Yoo hd e

Figure 9.21 shows a comparison of the experimental data of E. P. Volchkov and
E. I. Sinaiko [16] on the burning of a graphite surface in an air flow; without screen and
with a nitrogen screen, with the computed results using (9-7-30). The agreement of
the proposal method of computation with the test data is quite good. As can be seen
from the curves, the combustion intensity is considerably reduced with the presence of
a screen.

Figure 9.22 shows the generalized test data [16] on the intensity of burning of a
graphite surface without a screen and with nitrogen and argon injections. The data
were developed in the form of the law of mass transfer, taking into account (9-7-28)

289
and (9-7-29). The computational relationships were set up from the formula /289

St,=0,0128 Re | " Sc-*F (**;")"" (9-7-31)

for y, =7, 0 and 1.
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FIG. 9.21. Burning of a graphite duct in an air flow
with a nitrogen screen.
(9-7-30): 1—for y, = 7; 2—for ¢ = 9; 3- for ¢, = 10.
Points from the tests of E. P. Volchkov et al [16] .

Curves computed from

Type of
Symbols gr}:;hite Tetnkg/(m2, sec) | To®y- kg/mZ.sec| 4. °C
le) PPG 168 ° 160
4 |Vt i50 © e
5 PROG-2400 - o -
] g?g 15 0.6 100]
') PR
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J \\\
—_—
© ;,\ S
*v I} ® *’q,w P
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/& Fa i
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| Re*
P v
Pl 2 ¢ 6 8w 2 4

FIG. 9.22. Generalized test data on the burning of a

graphite duct with nitrogen and argon screens.
Straight line—calculated from (9-7-31): 1—y, =7;
2— = 9; 3—y; = 1: Points—test data of E. P.

Volchkov et al [16].

Gas Nitrogen _ Argon
symbols | O laleloalololalvl+
Tom 8 | 156 | 1% | 1% | 1 |20 |25 | 20 l 175
1.0, o | o 80 | 47.1 | 80,6 | 59 | 123 | 103.8(1005
T,k 1893 | 1873 | 1893 | 1923 | 1873 | 1673|1873 | 1796 | 1821
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As can be seen from Fig. 9. 22, the calculations and the test data agree satisfac-
torily. For the conditions being considered, the non-isothermicity reduces the inten-
sity of mass~transfer by a factor of about 3.

Figure 9. 23 represents the test results [16] on the burning of graphite in a flow of
air with the injection of helium.

B
2
3 s &
‘/- PPYYR 7V vy !
V4 ’/. ®
L 4
s ®
1 2
¢ £ [77] %50 mm

FIG. 9.23. Burning of a graphite duct with a helium
screen. Curves—calculated from (9-7-30): Points—
tests of E. P. Volchkov et al [16].

Symbols Tobe. kg/(m2. sec) 1,9, kg/(m2+ sec T..'K
A 13 5.88 1940
® 158 11,8 1950

As the calculations show, under the conditions of the tests by E. P. Volchkov and
E. I. Sinaiko the maximum effect of a transverse flow of matter on the law of mass~
transfer did not exceed 10%—i.e. within the limits of experimental accuracy. On the
other hand, the effect of the non-isothermicity, as already noted, was two orders
larger. Taking this circumstance into account we can ignore the effect of a transverse
flow of matter on the law of mass transfer, and then ¥=W¥;=Stp/Stm. /290

Figure 9. 24 shows all of the test data of reference [16] represented as the function

wemt [VETE (VB0

Here also are presented the test data from the paper by Perkins and Worsoe-
Schmidt [194], reworked using the formulas of Chapter 8. As can be seen from the
plot, the experimental values and those obtained using the proposed method are in
satisfactory agreement.

There is no difficulty in principle in extending the proposed method to a flow of /292
compressible dissociated gas, to the axisymmetric boundary layer, to the internal -
problem, etc. With the presence of a flame front in the boundary layer, the relative
laws of heat- and mass transfer are derived using the formulas of Chapter 4.
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FIG. 9.24. Generalized test data on the
burning of a graphite duct with a screen of

different gases. The quantity

™Y
'/_TT ar, o !

is plotted on the abscissa. Curve-—computed
from (9-7-13): @—tests made by Perkins

and Worsoe-Schmidt [144]; +, o, O, a, ®&—
tests by E. P. Volchkov et al [16].

9.8. Turbulent Wall Jet with w, /Wy >>1

In the preceding sections we have considered the characteristics of a wall jet,
essentially with w_/w, << 1. The effectiveness of a turbulent jet propagating over a
flat wall with a stationary ambient gas is a matter of practical interest. A diagram
of this problem is shown in Fig. 9.25.

7.
w0 w47, FIG. 9.25. Diagram of a
oy turbulent wall jet.
%— | f
Ay ~ _1___—}——1 T—:-
o« =T ’| Tw |4 LNy xX
o A | dx |

For a jet element of length dx and thickness 6,, the momentum equation is

LY

= (ewrdy=—=, (9-8-1)
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or

3

d

3;-5pw’ dy+ - f o0 dy = — =, (9-8-2)
Y

Assuming that the frictional forces at the outer edge of the wall boundary layer are /293
equal to zero (withy =6, ow/0x = 0 and T =0), we can write for the contour 1-2-3-4:

LY 3,
d d
Tiwdy+w.z;spwdy=o. (9-8-3)
]

Here w, is the velocity at the outer edge of the wall boundary layer (withy = 6,).
Hence, taking (9-8-3) into account, Eq. (9-8-2) takes the form
d d r
w.d_;}pwdy_aagpw’dy:ew. (9-8-4)
]

We introduce the characteristic thicknesses for the wall boundary layer

3
8’=S ( _— Pn—"»’) dy - displacement thickness;

= 5 Dot l —_— dy — momentum Jloss thickness.
( Aad ]

Then Eq. (9-8-4) reduces to

i Ol + o, (3* —3) 2t =, (9-8-5)
or
dRe** . ** dir, . -
e Lo MR S 5-5-0
where

Re** = wp**/v,; £ =x/s; w,=7,'w,;
¢ /2=r+,/ p.w:; Re, = w,s/v,.

We must now turn our attention to the circumstance that the parameter dw,/dx,
under the conditions adopted, is not related to the pressure gradient, which is essen-
tially zero in a subsonic submerged jet.

With a power-law distribution of velocity in the wall boundary layer we have
(n=1/7):

[1+‘_, —.J=const=—8. (9-8-7)
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The law of friction for the boundary layer takes the usual form
th___ B 8-
TR (9-8-8)
Then
dRe** Re** duy B _8-
ai 1 C g =gew TeRes (9-8-9)
Since 6, << 6, we can assume that the change in maximum velocity over the length
of the plate is the same as that for a free turbulent jet [1]:
6,=C,2"=3,82-**. (9-8-10)
Integrating, we find
Re** — {Re"""*'" (_%._)c.c (m+1)
' . (9-8-11)
B(m 4 1) ResCox *° Xe\CaR(m+1) +a +17) —-
‘e m Iy e "'(_) ]}""’"
For x, — 0 we have
L
Re** — [ B(m + 1) Re,C,2**! ]"‘*‘ . (9-8-12)
TG (m+ ) +a+1
Taking B/2 = 0.0128, m = 0.25, C,= 3.8, C, = -8, & = 0.5, we obtain
£ 0015 (9-8-13)
2 Reg-zio.l .
or
__ 0,085 ¢ 0457 vy
[N —F—E—.—_,. f—m—;{—d&-. (9-8-14)
v
Figure 9.26 gives a comparison between the tests of Myers et al [185] and the
derived formulas. Figure 9.27 shows the same comparison for the test data of Seban
and Back [216]. As is evident from the diagrams, the proposed formulas for the
dynamic layer of a wall jet are in satisfactory agreement with the test results. Using
Reynold's analogy we find the heat-transfer formula:
a 0,12
Stg— POWDCPO _Reg'zi‘-'Pr'.' (9 8 15)
or
Ny, = %= 0,120 (ﬁ'—")"'z---‘ Pres, (9-8-16)
( ]

where a = qw/(Tw—-T*w).
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d dep—T— |
2 o i FIG. 9.26. Coefficient of friction in the
A wall jet. Computed from (9-3-14): 1—
/1 ' | Re_ =6 x10% 2—Re_ =7 X 10°. Points
P ! Q| from the tests of Myers et al [185].
4 | & .
. l \\ N
LR
3 ! N_L ! ]
l g—-Re;’/‘
2 I A
' 2 34 68mM 2 34 681
8r—r T
5.—‘}’-70’ !___[ FIG. 9.27. Coefficient of friction in the
-~-&\i;\ wall jet. Computed from (9-3-13): 1—
¢ *QW‘ - e WA Res = 3500; 2—Res =7000. Points from
J [ T the tests of Seban and Back [216].
| S
AW W W W 0
SRl /296
p _ss,oﬁgi 7] 7
d ~<ie o A FIG. 9.28. Heat transfer in a wall jet.
2 =3 ] 1—calculated from (9-8-15) (W /W,
.; R Bobad, o &L; — ); 2—calculated from the formula
— 0,113
P) ye— of E. P. Volchkov [15]: st= m
6 SIS (w,iwe > 3); 3—calculated from the formula
P 3 Sty = 00288 Re 702 pr—0-5(w 1wy = 1); 8, O, O—
¢ 6870 2 ¢ 6800 2- 4 tests of Seban and Back [216].
Here TW is the equilibrium wall temperature, which to a first approximation can be
taken equal to the temperature on the axis of a free turbulent jet.

In Fig. 9.28 the test data of Seban and Back [216] are compared with formula
(9-8-15). As evident from the diagrams, beginning with x/s = 4 the agreement between
theory and experiment is satisfactory.

E. P. Volchkov and P. V. Nikitin have extended this method of computation of the
turbulent wall jet to the more complex conditions of the propagation of the jet over a
burning graphite surface.

Figure 9. 29 is a diagram of this problem with chemical erosion at the wall a /297

flow of mat j. = i .
transverse flo matter Jw =PV, 18 created
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1
)
y oS FIG. 9.29. Diagram of wall
jet on a permeable surface.
Wy —_r )
T St oy«
e L N R R R R

Jw

Integrating the equation of motion of the boundary layer along the y-axis from
y =0 toy = §;, with boundary conditions

y=0 r=1y ©:=0; pwy=jw: } (9-8-17)
y=3; +=0; w,=w,=f(x)
and taking into account the equation of continuity, we have
[ £ J a. R d o f -
dee’ +(1+6__._6_.__)_}T_w__£f_(1 + b,) Re,,, (9-8-18)
where b ——-:% ci is the wall permeability parameter; Re**= p,w3**/u,; Re, = p,w;s/n, .
We take the law of friction in the wall boundary layer in the form
en B -m [Bw\™ -8~
@ 2 Re™ (») 13 (9-8-19)
For subsonic speeds, in the region i, > 1, we have
[ X 1' -
Y= [m'gy w=T0 +"b‘)‘a’°‘gi/+ (9-8-20)

where ¥, = iw/ ips iw and i; are the total enthalpies of the gas at the wall and at the outer

boundary of the wall layer.

If the interaction processes between gas and wall material take place in the diffu-
sion region, the permeability parameter b;, as shown in Chapter 8, can be expressed
in terms of the reduced weight concentrations of the chemical elements entering into the

reaction (see 8-5-13). For example, for the interaction of air and carbon in the diffu-
sion regime (with Tw >1500° K), by =0.173.

It was shown earlier that for isothermal conditions the shape parameter c; = 8.

Let us estimate the influence of non-isothermicity and the lateral flux of matter on
the shape parameter c,.

Assuming o ==t"7 and taking into account the relationship between density and
velocity (for M >> 1)
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Byt —o

from the formulas for 6*/6, and 6**/6,, we have

[ ]
e | (=0 :
“ _.-‘ 7[ (l— ,#)l lnq’ + § .(77_.\') (l _¢)v+l ] ’

¢ "
=" ['("‘1 —yr ¢+ =

[]
(__ l)"li'
+20 T—B—v —w*‘] )

&y
/
-15 — ] R
/ \\
i A a1l —
5 A 5
a0 20 3 W N ! é J 4
Fig. 9.30 Fig. 9.31

FIG. 9.30. Influence of non-isothermicity on the mag-
nitude of the shape parameter ¢;. Curve calculated
from (9-8-22) and (9-8-23).

FIG. 9.31. Effect of injection on the shape parameter
¢,. Curve calculated from formulas (9-8-25) and
(9-8-26).

(9-8-21)

(9-8-22)

(9-8-23)

To estimate the effect of the transverse flow of matter on the shape parameter cy,

we make use of the limiting distributions of velocities, which, for the case

take the form (see 5-2-3):

Taking w,=t'"’ we obtain

cnl-

-
X A
l .

VTFo—) o (T 4b)

(Vm—%);
( by _

8
+ 5 VITb — 55

3%
3

o]

\

&
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p = const,

(9-8-24)

(9-8-25)

(9-8-26)



Figures 9. 30 and 9. 31 show the dependence of the parameter ¢4 on non-isotherm- /299
icity (with b = 0) and on the injection (with § = 1).

As seen from the plots, the non-isothermicity- and injection-effects on the shape
parameter ¢ are quite prominent.

The integral of (9-8-18) is

wl

IT:‘ (m+1)+1 (l + bu)

S—

Re“:f:c‘ [%(m-l— 1) Re;

&l

1 (9-8-27)
bw \™ wnj6y1+m M+l
x‘l’ (;-:) dz +(Re ll.. )x. ] .

With the conditions by = const and ¥ = const, and taking (9-8-10) into account, we
have for the region x >> X;:

__JB(m+1)Re, (1 +b,) e,x*Hw pi)m‘;:l—. N
Re"_{ 2 [ar, (m+l)+¢.:|..1] v ) (9-8-28)

Making use of the law of friction (9-8-19) and the Reynolds analogy in the form
St, =2 Proes, (9-8-29)

we obtain a formula for computing heat-transfer:

T
— B¥jac, (m+ N+a+ 11" o \ T
Sh=— — (W) (9-8-30)
2 [—.; (m 4+ 1) Re, ¥ (1 + b,) c,f"‘f"]"'* Pre.s
In practical computations it is more convenient to use the number
St, = —I"_—St, &, =cSt, x". (9-8-31)

(XXX

In the paper by E. P. Volchkov and P. V. Nikitin [15] tests were made in a cylin-
drical graphite duct with induction heating. A nozzle at the duct input provided an air
screen.

The mass-flow of matter at the wall was determined from the intensity of burning
of the duct. Preliminary calibration tests showed that in the regimes studied c, = 3.6
and @ = -0.45. In addition, the permeability parameter b =b; ¥ was less than 0.1 in
the tests, and its effect on the law of heat-transfer and on the shape parameter ¢y /300
could be neglected. The non-isothermicity factor was the major influence on these
parameters; the non-isothermicity was about ¥ = 8.5 in the tests.
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FIG. 9.32. Burning of a graphite duct in an air wall
jet. 1,2,3—calculated from (9-8-33) for slot veloc-

ities of 114, 66 and 26.7 m/sec, respectively.
Points from the tests of P. V. Nikitin.
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FIG. 9.33. Mass transfer in a wall jet (burning
graphite duct). 1—Calculated from (9-8-32) for

¥ = 1; 2—calculated from (9-8-32) for ¥ = 8. 5.
Points from the tests by E. P. Volchkov et al.

Symbols O A a © X
1,,. kg/(m2.sec) 135 | 744 88,2 32,3 2,9
T, °K 1923 | 1938 1988 1997 1988




In this case we have from Fig. 9.30 that ¢, =-11. Then Eq. (9-8-31) reduces to

02__ 0.12 L
St Rl = g (e ) 0 (9-8-32)
or
__ 0,12b,p,w,Ws. pw \*? a
he= oo () (9-8-33)

A comparison of the calculations of burning intensity of the graphite duct along the
length with various injection intensities from (9-8-33) with the tests of E. P. Volchkov
and P. V. Nikitin is given in Fig. 9.32. As seen from the plot, there is satisfactory
agreement bétween calculation and experiment.

Figure 9. 33 provides a check of formulas (9-8-32) (for ¥=8.5). But here, for
comparison, the curve is calculated for isothermal conditions (¥ =1). We see that in
this case non-isothermicity has a significant effect on mass-transfer, reducing it by a
factor of more than two.
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APPENDIX

A.1. SUMMARY OF THE PRINCIPAL COMPUTATIONAL FORMULAS

A.1.1. Flow Past an Impermeable Plate

where the coefficients B and m are taken from table 1.

246

Standard Conditions
Frictional drag law for isothermal flow:

2

€= @5 mRe** + 3,8)

Heat-transfer law:

2Pr-o.1
St = (2.51n Rey +3,8)7
Mass-transfer law:
Stw — 2 Sc-.,‘ll

Using a power-law approximation:

€4 == BRe**-m;

St. = % Pr-0.15Re** -m:

B .t
Stpe = g Scm%MRep ™™

For Re*™ < 10%, m = 0.25 and B = 0. 0256.

For 10* < Re** < 4 105 m = 0.182 and B = 0. 0148.

The local coefficients of friction, heat- and mass transfer:
€ge= 2 Sty Pre.? = 2 Stpg Scv.78
= 0,0576 Re; %% (for Re, < 107);

¢e ==0,0308 Re7>'*! (for 107 < Re, < 10%).
The mean coefficients of friction, heat- and mass transfer:
& = 0,072 Re; 2 (for Re, < 107);

24y = 0,0363 Re; %54 (for 107 < Re, < 10%);
l’. E 2_S—t. Pre.?s — 2-§im Sce.8,

(2510 Rey + 3,8)

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-T)

(A-8)

(A-9)
(A-10)

/302 .

/303



Distribution of velocity, temperature and concentration:

w.=-l+—V‘Lln..

.—-|+ 'St lﬂgr

D=1 + — V§tm Ing,,

Effect of Nonisothermicity and Compressibility

Limit Relative Frictional Drag Laws

1. Subsonic velocities:

(4] 4

o= (G Yo, T

2. Supersonic velocities:

e
- ¢ arcsin V‘b—q‘—.—
== ( )R’“w=

Cro ‘b‘—l
or
ra—1 2
arctg M, V’k;l
Foo= = |’
M, V’ )
when 44 #£0,
1 2(4°*— 1+ ad

= {
Yo =§—1 [““ "VIe—D ) T Y
]

o
VEaE —1) ¢* + ) +@d)?

— arcsin

Approximation Formulas

In the general case

k—l
2arctg M, V

L (‘/ +I)M.‘/ k—

For the case r = 0.9, k = 1.4 we have
4,7 arctg (0, 424M.) :

(Y F=+1)

(A-11)
(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-1T7)

(A-18)

/304
(A-19)
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or
12

w,=[-:—[(1,‘:"—) +1J’+o,oamg}".

(A-20)

For the power-law approximation of the frictional-drag law under standard condi-

tions we have

@tz (koo =%

Cre

Po= P00 = Ppos
¢g== 0,0576 Re ;0 W28 (for Re, < 107);
¢9m=0,0308 Re g 'S5 (for 107 < Re, < 109),

where
PeeX |
pw '
¢y =2 St Pre.1s = 2 St,, Sco.75.

Re-w =

Limit Velocity Distributions

1. Subsonic velocities:

o=V, o, [Vr-l-l =i u.];

2
H =$H,.
2. Supersonic velocities:
arcsin 2@ — Dot b
Vago* —n) + @)
=V§E—1 V¥, w,+ arcsin ab

VRE =D+ 68
When A¢= 0

w:-VV*—:l-sln[V'#‘—-lV‘l‘nu.];

H = H(1,674* — 0,67).
Effect of Gas Dissociation ("Frozen' Boundary Layer)

Limit frictional-drag law:

B, - T, ¥,T,
where

] ™
W= _17_—* Tw . Yu= k—1 ’
T t! M r=g
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(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)

(A-27)

(A-28)



2 2, _ ! 4 aw
() e s,

Limit velocity distribution (subsonic velocities, ¥ = 1):

o= T w.[«o. l—_TVE-f-y‘T:]. (A-29)
for the case @ = 0, ag=1:
o= (0,1704+0,83) wo; (A-30)
for the case o= 1; a4 =0:
@=wy(1,17—0,170,). (A-31)
Thermal Boundary Layer on a Curvilinear Impermeable Surface
Reynolds Number over the Energy Loss Thickness

1. Two-dimensional boundary layer:

=
.. 1 14+ m » m
Rem=ﬁ {W’ BRC”SIPQ (_P_.V.V_) U(l
X

t+m

! ] (A-32)

- u-)‘:l Aip*™ d2 + (Repgy i) 27
1]

2. Axisymmetric boundary layer is a nozzle:

x
- 1 l14+m B \™
Rero =35, {2?:" B Re»f“’w (Ew')
=

XDm-4il+™ g2 | (Repo, 8isD)LH™

]
nH (A-33)
r=x

For the subsonic region:
/306

m+l
o . ni+m (A' 34
+Repan2n } . )
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For an axisymmetric boundary layer:

=
1 1 m
Re;= arp {—%’-‘- B Re,, yil’m (%) TAT1Hm
ra
1
m+l
X D'+ mdz 4 (Rey ATD)!;':’E_ } . (A-35)
Local values of the Stanton number:
- B  (pw\™ _
T (Regop)™ (p‘.. ) ’ (A-36)
Local heat fluxes:
Gyz = Strpeweliy. (A-37)

Flow Past a Plate with TW = const

The turbulent boundary layer increases from the leading edge of the plate:

Sty = 0,0288 (W_)** Re;3:2pr -0, (A-38)
For flow over a blunt-nosed body (W, = cX):

]
¥ m+l

B
St= 2 Pre = (A-39)

1 1
[—2:;,_:' B ';_'1’ Reuw]m+

For cross flow over a plate (c =1, m = 0.25, B = 0.0256, n = 0.75):

St == 0,03754%;2 Reg;0;22 - 0.8 Pr-oe, (A-40)

For a given thermal stress distribution:

1 m . mel
BYg \PHT( w \AHT ;q‘”di : (A-41)
Sty = (W) ( tree )

For the case qw = const

St, = 0,0288 (¥,)*%* Re0-2Pr-e.s. (A-42)
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Plate with an initial heat-insulated section:

0.0288  fx — x,\%%
= Reg}zpr.'. ( % ) .

(A-43)

For a diffusion boundary layer it is necessary to replace Al by Ac, Pr by Sc and

St by StD in Egs. (A-32)-(A-43).

A.1.2. Flow Past a Permeable Plate
Isothermal Homogeneous Boundary Layer

The limit relative frictional-drag law:

The limit velocity distribution:

Taking «, =& we have

b
. _A(mrieg)
woit  @FDEFTD)

7T a2 .
©wav™ 2n+1 °

b 1 b b \? 1
Foou= (' —T)n_+T+ [T_(' - T) ]m
b b\ I & 1
_2T(l_T)Bn+l 6 myt’

§oo =____2n.._.__-
o et = @At DA ¥ 1)

3 n(2n+l+—:—)

Ha "‘_“:F(l - —:—)(2n +1) +[%°(1 - %‘)’J(" +1

'._2L(, 5\t higntD) _ b* TS eI

4 4 3n+1 . 16 in+1
Hcocrit=l+4n'

(A-44)

(A-45)

(A-46)

(A-47)

(A-48)

(A-49)

(A-50)

(A-51) 4308

(A-52)

(A-53)
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Uniform gas injection (jw = const):

_oa (1 —0,255)

€4 2= 0,0576 Re m.—,—;

b= 2i\\' —_ b -
7 pe®acse (I +0.256)*7 *

b .. =35

Xcrit

Constant permeability parameter (b = const):

(1 —0,256)2

—02 " T V.o .
€g==0,0576 Re (1 0,250+

b .
ba = 0,250

b

xcrit o™ 3¢5

Limit gas suction:

Allowance for a finite Reynolds number:

b, \t,
Vo= (' -F‘;) -

0,83
berit ".b,crit cn(l + (Re**)e. u)

Turbulent Boundary Layer of Variable Density on a Permeable Plate
(Subsonic Velocities)

Limit Relative Laws of Frictional Drag, Heat- and Mass Transfer

1. *|<l:
YW Fb) ¢ VB
e u—mb[ Vimwi+ Voo | °
1 1+vVi—3 \'
bcritm *(lﬂ —Viet :: )
2- ’|>l:

wl/ 2% 1
= l)b ["“'“ V(v —n)(l el (ETn i 17._—-—!] '
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(A-54)

(A-55)

(A-56)

(A-57)

(A-58)

(A-59)

(A=-60)

(A-61)

(A-62)

(A-63)

(A-66)



. 1 2_‘51 2
berit =g | 2FCcos ¢ .

Approximation formulas:

RRNT 2y L
v [ Ha 0 e G-

-1

J H

4
berit 0>~>"T 2 "
R
where 4 =p ¢/p
w
Boundary Layer [
Homogeneous
Tw
non-isothermal. .. .. 7o
[ ]
Inhomogeneous
i b
sothermal ....... . \ _
e l+735 B—D
Nonisothermal;
mixtures of gases . »
o ‘W h _
of like latency .. ... T=¢[l+——l+b‘ (R l)]

b H
T =Py (1_ b )'
where

()"

Limiting velocity distributions:

-Tz_d;

for ¥y < 1
K*—ac
.=——a(2K+d) »
where
a=(1—$)b, d= (1 — ) B + 45 ¢ =W,
K= [ Vala+d+o) +a+—,;-d] RS
for y; > 1:

(b — D + b0
srctg Vq,' +i( “ThFRl—%)e

- arctg V{# = DT + ) —V*'z— LVa_ (1 — ).

(A-67)

(A-68)

(A-69)

(A-T70)

(A-T1)

/310
(A-T72)
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For the case of critical injection:

<1

ViaFi—®e+VT—we

Yise, VWi 7
a[l-]-Vl *h]e —32s ntoo('u—l)

: '/ (b, —1 1
arclg m—)—ga arctg Vi —1 (A-74)

V15—

2 crit oo (1 — ).

(A-73)

*|’>.l

Shape parameter H:

H, (1 4 0,056). (A-75)

Supersonic Gas Flow along a Permeable Surface (Homogeneous Gas)

In this case

:rwaw,wu( |- (A-76)
: crit o
where
9 ! arctg M, ’/ r k;l !
P — 1 q“M= —= ’
Tw "4 M E—1 (A-77)
derit o= bxps Tars
bcrit Zpls defined by formulas (A-65), (A-67).
Injection of a Homogeneous Gas of Like Valency R = C)
In this case
1 | + Rb, .
ww’*‘{ ) [4'“ T, TO+b4 )72 ] (A-78)
R b, 1+Rb6. 7).
4
berit o = 1 2 — (A-79)
FW+ R
Turbulent Boundary Layer of Dissociated Gas on a Permeable Surface /311
In this case
b 2

v.:qr,qlutv‘(l “Tc?it)' (A-80)
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where

k—1 -3
- 9. ) arctg M, 3
‘l’.: —_— M th= — 5
Tw R—1 {
o+ M.]/r — |
w

berit 0 =Pcrit @ T + 2%, ’ (A-81)

a=0

b . is defined by formula (A-79).
crit @

a=0
When the boundary conditions are similar, the triple analogy holds:
¥= Ty = Fpeo . (A-82)

Formula for the thermal permeability parameter:

Kbicrit [ / Y¥e¥m
bi=buw— W, Wy \ Kbicrit-i-l—_1 ! (A-83)

where

.—;'

Py—iw

Turbulent Gas Boundary Layer on a Permeable Surface of Weak Curvature

For the case b = const (TW = const) (subsonic velocities):

‘PQBE'”'
Cp== —.
[l tm BReywy (¥, + b)-‘- (“"")'d:! ]H"' (A-84)
For an axisymmetric boundary layer: Ja12
‘I‘mbo_""
Cymm . ]
H o
[I—+—BRe.w D +m) (¥, +b)§ +(L+m)a D"‘“dx] +m (A-85)

The coefficients m and B are taken from Table 1.1;

wml+H=1+Ho: (14+0050).
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For critical injection:

r P

Re** = ,7-‘;! I+_m BReoWbcn S +(14m)x d_-‘lﬁ-ﬂl (A‘86)
L 3
Bb,

Fw crit = Pos ’(_Re'_‘gji (A-8T7)

Integral of the energy equation for a plane boundary layer:

3
Re**, — %} 2’;;,":', f Ul — UyFTp, (1
l 2

]
+K) At mdx + (Re?, Ai)';j”}'”'- (A-88)

For the subsonic region with TW = const and T' = const (Re** =0atx =0):

T

3
14 m-H -
Re**,., ={2—l;+,—,'f',7 Bby (1 + K) Regw Y (A-89)
[}

Mass flow of injected gas:

Jw = patq Sty by, (A-90)

where

B
Ste= F(Re*vym * RE*ww= Re“‘< ::? )

For subsonic velocities and Tw = const:

B
74

x _m_
B 1 T
[br 1+ K)] [ g(gtj;l) Rey, S Y
0

Jw = pote

(A-91)

In the neighborhood of the bow point (W, = cX):

1
. Peally,C Tb';“l b athd
fow= — . (A-92)

- mel B(M+I)Re c __l-
1+ K™ [T 2
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Chemical reactions on the surface of a body:

€= Chw

= (A-93)
! (€2 yw
Gas enthalpy at a thermally insulated wall:
iw=iy+ b ... (A-94)

Integral of the energy equation ( subsonic velocities, iw = const) for a plane bound-
ary layer.

3 L
Re“-w={!§%? Yo, (1 +b2) Ré.WS '?.arr:}"'l (A~95)
]

for a nozzle:

x ]
1 -
Re"¢w= —.!—I-B;]T'_‘-n’") q;m (1 + b.—,) Re‘. ".(m -0,1% di]"‘ , (A 96)
o 4

where
4G
R = SgouDirit
The intensity of burnup of the material:
B ;
Iw = e ¥o Tpre (ReT 1™ (A-97)

A.1. 3. Influence of a Longitudinal Pressure Gradient

The limit critical parameters in the turbulent boundary layer separation section
(constant density) are

3 A R
(—fw)crit:: 0.0 (T et
(G‘l =0.16; Hcpjp=1.87; f=—0.01.
crit
Frictional drag law in the diffusion region:
®=[1-ViC=DI (A-98)
Influence of non-isothermicity and compressibility on the critical parameters:

1. Subsonic velocities:

(“‘.L. f)c it 2 :
rit__ B . (A-99)
(Tf? ')critO (.VV ! )
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2. Supersonic velocities:

Cal)

2(4° — 1)+ Ay

1 R
3 f) '4»‘—1[“‘5‘“;/ T — D& 69 T @
(.6“ erit0
in av ],'
TR T — D T 59 + @

Approximation formulas:

(}‘T'- ’)crit 1 1 k—1 21"
(—T',RT)— %{TH"-“}- P+ r— Mo} :
crit0

For the subsonic velocity region:

with p < 1
H o et _ oo
crit = Herigobs 0 =408
with ¥ > 1
Herie | 1.3 derie _ 1
crit0 T oo VTV oo ™Y

For the supersonic velocity region:
with Ay <0:

Herie = 2.414* + 1,383¢ — 0,52;

with Ay = 0:

ferit -l

Terito

Dynamic Boundary Layer on a Curvilinear Surface
Integral of the momentum equation:
e I tr B .‘
Re*%y = exp(—m ) (m+41) 35 Re..g(w,wn)w
i -1

Bw me+l

m _
X(‘H—‘) U (I —U3yr—! exp(l)d.tJ ’

258

(A-100)

(A-101)

(A-102)
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(A-104)

(A-105)
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where

dw,
I=(m+1 S(l + Herit)
Local friction coefficient:

B m
=2 ¥y ¥ Re_..)'"/ :’: ) . (A~107)
Boundary-layer shape parameter:
Re**,, ﬂ
f= 1 dx° (A-108)
RegoUt (1 U2~
For subsonic velocities (Tw = const):
= 11
Re**, = 5;* [U}—"’ BRegw¥,g, 5"75*“*"‘" az ", (A-109)
: ]
wheren =1 + Hcrit'
Local friction coefficient:
¢y =W, W B (Re**)-™; (A-110)
Re** div
f= Re.ow‘:’a. X3 (A-111)
Area of a plane subsonic diffusor with pre-separation friction
13.87
F= [l + v ao: (x—x.) ] . (A'112)
For the case of intense wall cooling ¥ —o0, Hcrit — 0):
’ 0,02 12
P [1+gm = | (A-113)
A.1.4. Joint Influence of a Longitudinal Pressure Gradient and Gas Injection
Limit frictional-drag law (constant shape parameters)
v= (i ——) (1= Vie=Tl, (A-114)
where /316
l = lleriti

. 2 -

fot b L )T w119

icrity = \NTLriv/ 3
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A.1.5. Turbulent Boundary Layer in the Initial Section of a Cylindrical Duct with
Impermeable Walls (Subsonic Velocities TW = const)

Length of the initial section:

init  0.84 40,55
RS =g (A-116)

where
Rey = 4G '=Dy,.

Velocity in the potential flow core (m = 0.25, B = 0. 0256):

(+1.39) 1,25+ 1] [4(&.—1)0.15

— (Te— )03 +VT (Fo— 11028 4
vz ! (g — 1)°3% — V2, —1)0s 41

V2(x, — 1)*23 By — |)1.35
—V7 arctg l__((':._._l))q’, ]—u 41,3y \Ze w.)
0,4¢‘~’5f'
Vot 1) RS (A-117)
Reynolds number over the momentum loss thickness:
R ~. - l
Re*®,, = _.e.-w___gn ) (A-118)
Local friction coefficient:
0.0256
= q’wW' (A-llg)
Reynolds number over the energy loss thickness:
R, = Reoc,y (Fo — 1) | 1.25 41,624

5.2y 3 L gy
V2(z,— 1)*®

X [ 4T, — 1)~ VZarctg

1 — (@, — 1)o.®
LI (Fo— 1054V T (@ — os 4 1 1)}OF (A-120)
VZ 5 (Bg— )0 — V(0 — )01 4 | JJ‘ '

Local values of the Stanton number:

0,0128

St=1¥, (Re;_’w)o,up‘o,n '

(A-121)
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A.1.6. Friction and Heat Transfer in a Stabilized Gas Flow in a Pipe

Coefficient of friction and heat-transfer:

(£ =(3ty (2 _
(c:. )n—epw (St. )ﬁ,,w“( DR

where
Repy, = pDnyi =Ty /T,
or
Nu=0,023Re** Rr *.43-2.27,
where
Nu=aD /A; Re =D/ §=Teu/T.
A.1.7. Effectiveness of Gas Screens
Initial Cooled Section
1. Plate:
o= ( 14+ 15.5'5—:#)"" )
2. Curvilinear surface:

1.

B|+lll
max
={1+ l+m

pw \™ T gt
Sth(ﬁ) U(l=Un*! el*™uz

X

= 1 m+l
. cm ——
Reg[s ll»'w(-:Tw) Ul — Uy Ji]

0

Injection of a Cooled Gas Through a Porous Section

Flow past a plate; subsonic velocities:

0,25 Re,, -8

Rey® (1 K)o

)

Tmal

(A-122)

(A-123)

(A~-124)

(A-125)

/318

(A-126)
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2. Flow past a curvilinear surface:
1 -o8

=
0.25Re..\¥,,(“—“11—)°"'5 w, U (| —Uy*" dz
oo ‘_ . (A_]_27)
0,=|1+ 5
b o+ K)r R?:,'A;%S
3. Gas flow in a supersonic nozzle:
st \ e
W Tvm -1 45
0.25 Re“q’“(t'-_»_)j Wy (Dym-1dz (A-128)
e, |1 5
t + (1 + K1 Re",,}is (D)r2%
Injection of a Cooling Gas Through a Slot
1. Flow past a plate; subsonic velocities:
e= [l +0,24Re .23 ,";'__(:,_";_'ﬂ_]-o_. ‘ (A-129)
2. Supersonic flow past a curvilinear surface:
0,18 2 }_1_ X R
Bwl — ynr-T
.0.0!63'-"'1‘,,( P.”) Re..j w,U Us) dz (A-130)
0|1 2
+ ReLE
3. Gas flow in a supersonic nozzle:
0.01531,.5“,“(‘:;‘?,_1_)0." Rews z y -0,0 R .
o= 1+ Re o ) S W, (P)m-1dz (A-131)
z,
Heat Transfer in the Presence of a Gas Screen /319
In this case
Sty= 5 Rey' ™" Pr-n, (A-132)
where
. 1 m+NB. &r
Re®*r = T —Tw1 [ 2Ppres Reo" [9
Te—Tw1 ] l ;.
(A-133)

Ty — Ty ™+ -
i

_10"‘ Ty1
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- T,—T
- Gw = Stupgzy (To — Fyg) [9 e ] : (A-134)

Effectiveness of a Gas Screen and Heat Transfer on a Chemically
Reacting Surface with Tangential Injection of Inert Gas
into the Boundary Layer

Limit heat-transfer laws:

for y; < 1:
Mey, T, 4 VIr—4)0+6%) + Vo=, 1. _
L M, T.W b.l (1 —4‘:) [lﬂ Vl——— .+ Vb_—"‘@, J » (A 135)
M*, T, | 1+ VT2 ).
b= e ,_%[nn AL l.] . (A-136)
for 34 > 1:
M, T 4 — l)(H-b’.)
Y= T T =T .(¢.—l) ["c‘“V _
l (A-137)
-~ arctg V?'._—é..l ’
T, I 2— 2
berit-= 3 m’ T‘:v ey (arccos ‘hh ) . (A-138)
For an impermeable wall:
My T, 72 ! A-
q"a M. T‘W\Vﬁ-}-l). ( 139)
Burn-up of surface in the presence of a screen:
i =0 % Rep~™Sc (::—:)mp.:.".. (A-140)
where /320
3 1
R ~g| 2o I)J Rey(B)" w4 ooy Bomes [, (A-141)
Turbulent Wall Jet (ws/w(, >> 1)
Local friction coefficient:
0.0825 (A-142)

= TReam
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Local Stanton number:

i ( o )’ (A-143)

= Po“’a"‘uo= Re2'2i°-‘ Pre¢

St

where @ = m——¥ and T:V is the temperature on the axis of the free turbulent jet.
wow

Burn-up of the surface in the turbulent wall jet:

L 0. 12bpm et iy Y 144
lee = 0.5 Re‘:-? Pro.s (p., ) : (A-1 )

A.2. RELATIVE LIMIT LAW OF FRICTIONAL DRAG ON A PERMEABLE PLATE /321
IN A COMPRESSIBLE GAS FLOW [Calculations by (5-4-2)}

Air-air
3
v o|o.l|o.a|o.7|1|z|5]7||o]w||oo]|ooo
M=0
0, 2,6610 | 2,5620 | 2,3910 | 2,1260 | 1,9720 1,6150 | 1,0070 | 0,9199 | 0,7490 0,2440 | 0,1300 { 0,0138
0.1 | 2.29% 2 oaa0 | 310550 | 18170 | 1.6800 | 1:3610 | 0:9096 | 07552 | 0,6118 | 0,1916 | 0,1078 } 0.0143

1,0000 | 0,9267 | 0,8678 | 0,7492 | 0,6824 0.6331 | 0,3346 | 0,2716 | 0,2137 | 0,060l 0,0826 | 0,003Y
0.5310 | 0,5039 | 0,4586 | 0,3914 | 0,3541 0,2721 | 0,6660 | 0,1340 | 0,1045 0,0284 | 0,0153 | 0,0018
: 0,4779 | 0,3580 | 0,3248 0,2750 | 0,248 | 0,1900 | 0,1152 0,0924 | 0,0718 1 0,0193 | 0,0112 0,0012
10 0,2277 [ 0,2153 ] 0,1946 | 0,1644 | 0,1478 0,1120 | 0,0672 | 0,0537 | 0,0415 0.0110 | 0,0059 | 0,0006
15 0.1657 | 0,1565 | 0,1412 | 0,1190 | 0,106 0,0807 | 0,0480 | 0,0384 | 0,0297 0,0078 | 0,0042 | 0,0005
20 0.1312 | 0,1238 | 0,1116 | 0,0938 [ 0,0842 | 0.0634 0.0377 | 0,0300 | 0,0232 | 0,0061 0,0032 | 0,0004

05

!

.? 1.3650 | 1.3040 | 1,2010 | 1,0450 ] 0,9562 | 0,7556 0.4829 | 0,3950 | 0,3130 | 0,0905 | 0,04% 0,0060
3

D

M=1

0.05 | 2.4670 | 2,3744 | 2,2150 | 1,9683 |1,8251 | 1,4923 | 1,0136 | 0,8501 ) 0,626 0,2259 | 0,1292 | 0,0176
o1 | 201524 | 2,0680 | 1,9230 | 1,6997 [1,5707 | 1,2727 | 0,8522 | 0, 7079 06722 | 0,1780 | 0,1013 } 0,0142
0's | 1:3115 | 172533 | 1,1544 | 1,0042 10,9189 | 0,722 | 0,4645 | 0,3799 | 0,3012 0.0873 | 0,4790 | 0,0058
1 | 0/9c4s | 09105 | 08429 | 0,7277 0,6620 | 0.5180 | 0,3253 | 0,242 | 0,207 0.0586 | 0,0318 | 0,0038
3 | 05227 | 04961 | 0.4515 | 0,3853 [0,3486 | 0,280 | 0,1G41 | 0,1:321 } 0, 1030 0 0280 | 0.0151 | v,0m7
5 | 0'3736 | 03540 | 0,3211 | 0,2728 [0,24G1 | 0,1880 | 0,1140 | 0,0914 | 0,0710 00192 | 0,0102 | 0,c012
10 | 072261 | 0/2038 | 0,1933 | 0,1633 0,148 | 0,113 10,0668 | 0,0534 1 0,0413 0.0108 | 0,003 | 0,007
15 | 0.1649 | 01567 | 0,1405 | 01184 [0,1063 | 0,0803 | 0,0479 | Q,U382 o 0203 | 0,0078 | 0,0042 | 0,0004
20 | 0°1306 | 0,1233 | 0,111 | 0,035 {0,0838 | 0,0631"| 0,0376 | 0,0299 } 0,031 0.0061 | 0,0032 | u,wcd

Mm=2
0,05 | 2,0381 | 1,9602 | 1,6265 1,6202 | 1,5010 | 1,2249 | 0,8307 0,6967 | 0,5678 | 0,1866 0,1071 0,0148
0,1 1,8168 | 1,7445 | 1,6210 1,4311 | 1,3217 ] 1,0700 | 0,7146 0,5953 | 0,4815 0,1523 | 0,0862 0,0113
0,5 1,1757 | 1,1244 | 1,0355 0,9001 | 0,8243 | 0,6517 0,4176 | 0,3419 | 0,2713 0,0791 | 0,0435 0.00'53
] 0,8892 | 0,8475 | 0,7769 0,6709 | 0,6113 | 0,4779 | 0,3007 0,2444 | 0,1926 | 0,0545 0,0297 0,0035

3 0,4994 | 0,4740 | 0,4315 | 0,3684 | 0,3333 | 0,2564 | 0,1572 | 0,1266 | 0,0987 0,0269 | 0,0145 | 0,0017
5 0.3615 | 0,3425 | 0,3108 | 0,2641 | 0,2383 | 0,1821 0.1106 | 0,0887 | 0,0689 | 0,0186 0,0099 | 0,0011
10 0.2216 | 0,2095 | 0,1804 | 0,1601 | 0,1440 0,1092 | 0,0656 | 0,0524 | 0,0406 0.0108 | 0,0058 | 0,0007
15 0,1625 | 0,1534 | 0,1385 | 0,1167 0,1049 | 0,0792 |{ 0,0473 | 0,0377 | 0,0291 0,0077 | 0,0041 0,0005
20 0.1201 | 0,1218 | 0,1008 | 0,0924 0,0829 | 0,0625 | 0,0272 | 0,0296 | 0,0228 0.0060 | 0,0032 | 0,0004
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(cont'd)

’ o | or | o | or | 1 | 2 | s 7 10 0 | 1w | 100
‘ M=4
0,05 1,2430 | 1,1935) 1,1091 | 0,9800 | 0,9060 | 0,7363 | 0,4976 [ 0,4172 | 0,3404 | 0,1134 0,0658 | 0,0096
0,1 1,1519 11,1047 | 1,0244 | 0,9019 | 0,8318 | 0,6718 | 0,4485 | 0,3740 | 0,303] | 0,0976 | 0,0558 | 0,0077
0,5 0,8476 | 0,8097 | 0,7454 | 0,6483 | 0.5935 | 0,4699 | 0,3025 | 0,2483 | 0,1977 | 0,0586.| 0,0325 { 0.0040
1 0,6844 | 0,6523 | 0,5982 | 0,5169 | 0,4712 | 0,3693 { 0,2335 | 0,1904 | 0,1504 |.0,0432 0,0237 0,0029
3 0,4257 | 0,4042 | 0,3681 | 0,3145 | 0,2849 | 0,2196 | 0,1353 | 0,101 | 0,0853 | 0,0235 | 0,0127 | 0,0015
5 0,3208 | 0,3040 | 0,2760 | 0,2348 | 0,2120 | 0,1624 | 0,0989 |.0,0795 { 0,0619 | 0,0168 | 0,0090 | 0.0010
10 0,2053 | 0,1942 | 0,1757 § 0,1486 | 0,1337 | 0,1015 | 0,061% | 0,0489 | 0,0379 | 0,0101 | 0,0054 | 00007
15 0,1535 10,1450 | 0,1309 { 0,1104 | 0,0992 | 0,0750 | 0,0449 | 0,0358 { 0,0277 | 0,0073 | 0,0039 | 0,0004
20 0,1233 | 0,1164 | 0,1049 | 0,0884 | 0,0793 | 0,0598 | 0,0357 | 0,0284 | 0,0220 | 0,0058 | 0,0031 |.0,0004
M=6
0,05 | 0,7786 | 0,7467 | 0,6924 | 0,6099 | 0,5630 | 0,4561 | 0,3075 | 0,2578 | 0,2105 | 0,0710 | 0,0417 0,0064
0,1 0,7378 | 0,7669 | 0,6544 | 0,5748 | 0,5296 | 0,4269 | 0,2849 | 0,2378 | 0,1931 | 0,0632 | 0,0364 | 0.0052
0.5 0,5913 | 0,5647 | 0,5197 [ 0,4520 | 0,4139 | 0,3281 | 0,2122 | 0,1747 | 0,1396 | 0,0422 | 0,0235 | 0,0030
1 0,5032 | 0,4997 | 0,4599 | 0,3805 | 0,3471 | 0,2726 | 0,1734 | 0,1417 | 0,1124 | 0,0328 | 0,0181 0,0022
3 0,3446 { 0,3273 | 0,2983 | 0,2554 | 0,2315 | 0,1790 | 0,1108 | 0,0896 0,0703 | 0,0196 | 0,0106 | 0,0012
5 0,2715 | 0,2575 | 0,2340 | 0,1993 | 0,1801 | 0,1383 | 0,0847 | 0,0682 0,0532 | 0,0146 { 0,0078 0,0009
10 0,1835 1 0,1736 | 0,1571 | 0,1330 | 0,1198 | 0,0912 | 0,0551 | 0,0441 | 0,0342 | 0,0092 | 0.0049 | 0 0005
15 0,1408 | 0,1330 | 0,1202 | 0,1014 | 0,0912 | 0,0691 | 0,0414 { 0,033]1 | 0,0256 0,0068 | 0,0036 0,0004
20 0,1149 | 0,1085 | 0,0979 | 0.0824 | 0,0740 | 0,0559 | 0,0334 | 0,0266 .0,0206 | 0,0055 | 0,0029 0, 0003
' M=38
0,05 | 0,5218 | 0,4999 | 0,4629 | 0,4069 | 0,3752 [ 0,3034 | 0,2042 | 0,1713 | 0,1399 | 0,0478 { 0.0283 | 0,0045
0,1 0,8003 | 0,4790 | 0,4429 } 0,334 | 0.3576 | 0,2879 | 0,192] 0,1605 | 0,1305 | 0,0432 | 0,0252 0, 0038
0.5 0,4225 1 0,4034 | 0,3712 | 0,3229 | 06,2956 | 0,2447 0,1524 10,1257 | 0,1007 | 0,0309 | 0,0174 0,002
| 0,3727 | 0,3552 | 0,3259 | 0,2820 { 0,2575 | 0,2026 | 0,1296 | 0,1062 | 0,0845 | 0.0251 | 0.0139 | 0.00i7
3 0,2748 1 0,2611 | 0,2382 | 0,2042 [ 0.1853 | 0,143G | 0,0895 | 0,0725 | 0,0571 | 0,016t | 0.0087 | 0.0010
5 0,2252 1 0,2136 | 0,1943 | 0,1657 | 0,1499 | 0,1155 | 0,0710 | 0,0574 | 0,0449 | 0,0124 | 0.0067 | 00008
10 0,16U3 10,1517 | 0,1375 [ 0,1166 | 0,1051 | 0,0802 | 0,0486 | 0,0390 | 0,0303 | 00032 | 0.0044 | 0,0005
15 0,1265 | 0,1195 | 0,1081 | 0,0913 | 0,0822 | 0,0624 | 0,0386 | 0,0301 | 0.0233 | 0.0062 | 0.0033 | 0’0004
20 0,1051 | 0,0992 | 0,08496 | 0,0756 | 0,0679 | 0,0514 0,0308 | 0,0246 | 0,0190 | 0,0051 | 0,0027 0,0003
M==10
0,05 | 0,3711 | 0,3553 | 0,3287 | 0,2846 | 0,2859 | 0,2147 | 0,1446 | 0,1212 | 0,0991 | 0,0342 | 0,0204 | 0,0035
0,1 0,3581 | 0,3428 | 0,3166 { 0,2773 | 0,2552 | 0,2053 | 0,1370 | 0,1145 | 0,0932 | 0.0312 | 0.0183 | 0 00ox
0,5 0,3125 | 0,2984 | 0,2745 | 0,2387 | 0,2187 | 0,1737 | 0,1132 | 0,0936 | 0,0752 | 0.0234 | 00133 | 0 001
I 0,2524 1 0,292 | 0,2471 | 0,21:39 | 0,1954 | 0,1541 | 0,0989 | 0,08(3 { 0,0648 | 0 0196 | v 0100 | 0 0014
3 0.2198 | 0,2089 [ 0,1907 | 0,1637 | 0,1487 [ 0,1156 | 0,0724 | 0,0588 | 0,0464 | 0,0133 | 0.0072 | 0 vown
5 0,1859 10,1764 | 0,1605 10,1372 10,1243 1 0,0959 | 0,0594 | 0,0480 | 0,0376 | 0.0105 | 00057 | 0. ouog
10 0,53%5 10,1311 | 0,1189 [ 0,1010 | 0,0911 | 0,0697 | 0,0425 | 0,0342 | 60,0266 | 06,0072 ] 00030 | 0 vy
15 0,11221 0,1061 | 0,060 | 0,0812 | 0,0732 | 0,0557 | 0,0337 | 0,0269 | 0,0200 | 0,0056 | 0,0030 | o oo
20 0,0919 { 0,0896 | 0,05810 | 0,064 | 0,0615 | 0,0465 | 0,0281 | 0,0224 | 00174 | 0,001 | C.0025 | O 0002
M=12
0,05 | 0,2766 | 0,2647 | 0,2448 | 0,2147 | 0,1977 0,15% | 0,1074 { 0,0902 | 0,0739 | 0,0252 | 0,0155 0,0028
0.! 0,2678 | 0,2562 | 0,2365 | 0,2071 | 0,1904 | 0,153 | 0,1022 | 0,0855 | 0,0697 | 0,0236 { 0,0139 | 0,0022
0,5 |.0,23388 [ 0,2280 | 0,2097 | 0,1824 | 0,167t | 0,1329 [ 0,0868 | 0,0718 | 0,0578 | 0,0182 | 0.0104 | 0,0014
1 0,2195 | 0,2093 | 0,1921 | 0,1664 | 0,1621 | 0,1200 | 0,0774 | 0,0637 | 0,0509 | 0,0156 | 0,0087 | 0,C01l
3 0,1778 | 0,1691 | 0,1544 | 0,1327 | 0,1206 | 0,0940 | 0,0592 | 0,0482 { 0,038! | 0,0110 { 0,0061 | 0,0007
5 0,1541 {1 0,1462 | 0,1332 | 0,1140 | 0,1033 | 0,0800 | 0,0497 | 0,0403 | 0,0317 | 0,0089 | 0,0050 | 0,0005
10 0,1193 10,1130 | 0,1025 | 0,0872 | 0,0788 | 0,0604 | 0,0370 | 0,0298 | 0,0232 | 0,0064 | 0,0036 | 0,0004
15 0,0989 | 0,0936 | 0,0847 | 0,07t8 | 0,0647 { 0,0494 | 0,0299 | 0,0240 | 0,0187 | 0,0051 | 0,0027 | 0,0003
20 0,0350 | 0,0803 | 0,0727 | 0,0614 | ©,0553 | 0,0420 | 0,0253 | 0,0203 | 0,0158 | 0,0042 | 0,0023 | 0,0002
Helium-air
M=0
0,05 1 2,6607 | 2,3524 | 2,0411 { 1,7192 | 1,5853 | 1,2456 | 0,8277 | 0,6906 | 0,5599 | 0,1801 | 0,1026 | 0,0138
0,1 2,2987 | 2,0332 | 1,7600 | 1,4746 | 1,3378 | 1,0546 | 0,6887 | 0,5703 | 0,4586 | 0,1420 | 0,0797 | 0,0102
0,5 1,3648 | 1,2087 | 1,0399 ; 0,8583 | 0,7709 | 0,5922 | 0,3649 | 0,3008 | 0,2372 | 0,0678 | 0,0370 | 0,0044
1 0,9933 1 0,9411 | 0,7556 | 0,6193 | 0,5538 | 0,4206 | 0,2579 | 0,2082 | 0,1630 | 0,0453 | 0,0245 | 0,0029
3 0,5310 | 0,4714 | 0,4030 | 0,3272 | 0,2907 | 0,2172 | 0,1298 | 0,1038 | 0,0805 | 0,0215 { 0.0116 | 0,0013
5 0,3778 | 0,3356 | 0,2866 | 0,2317 | 0,2054| 0,1525 | 0,0903 | 0,0720 | 0,0356 | 0,0148 | 00079 | 0,0009
10 0,2277 | 0,2024 | 0,1726 | 0,1390 | 0,1228 { 0,0905 | 0,0530 | 0,0421 | 0,0324 | 0,0085 | 0,0045 | 0.0005
15 0,1657 | 0,1474 | 0,1256 | 0,1009 | 0,0891 | 0,0655 | 0,038! | 0,0302 | 0,0232 | 0,0060 { 0,0032 | 0.0003
20 0.1312 [ 0,1167 | 0,0994 | 0,0793 | 0,0703 | 0,05!5 | 0,0299 | 0,0237 | 0,0182 | 0,0047 { 0.0025 | 0,0003
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(cont'd)

b
’ o | o1 | oas | o7 | 3 | s 1 0 | s | 1o | 1o
M=1
0,05 | 2,4670 | 2,1814 | 1,8922 | 1,5929 | 1,4497 | 1,1527 | 0,7654 | 0,6384 | 0,5178 ) 0,1669 0,0952 | 0,0129
0,1 21524 | 1,9039 | 1,6480 { 1,3802 | 1,2519 | 0,9865 | 0,6441 | 0,5334 | 0,4291 ‘0.1332\0,0749 0,0097
0,5 13115 | 1.1616 | 0,9995 | 0,8249 | 0,7410 | 0,5693 | 0,3558 | 0,2894 | 0,2284 | 0,0654 | 0,0357 0,0043
1 0.9647 | 0,8552 | 0,7339 | 0,6016 | 0,5380 | 0,4087 | 0,2507 | 0,2025 | 0,1586 | 0,0441 | 0,0239 0,0028
3 | 05227 | 0°4640 | 0.3968.[ 0.3221 | 0.2862 | 0,2139 | 01279 | 0,1023 | 0,0794 | 0,0213 | 0,0114 | 0,0013
5 | 03736 | 0.3319 | 0.2834 | 0,2292 | 0.2031 | 0.1508 | 0,0893 | 0,0712 | 0,0550 | 0,0146 | 0,0078 | 0,0009
10 | 02261 | 02010 | 0,1714 | 0,1380 | 0,1220 | 0,0899 | 0,0527 | 0,0418 | 0,0322 | 0,0084 | 0,0045 0, 0005
15 | 0°164 | 0.1467 | 0.1250 | 0,1004 | 0,0886 | 0.0651 | 0,0379 | 0,0301 | 0,0231 | 0,0050 | 0,0032 | 0,0003
20 | 0.1306 | 0,1162 | 0,0990 | 0,0795 | 0,0700 | 0,0514 | 0,0293 | 0,0235 | 0,0181 | 0,0047 | 0,0025 0, 0003
M=2
0,05 | 2,038 | 1,8027 | 1,5629 | 1,3137 | 1,1946 | 0,9480 | 0,6283 | 0,5241 | 0,4251 | 0.1379 | 0,0790 0,010
0,1 1 8167 | 16074 | 1,3909 | 1,1638 | 1,0551 | 0,8305 | 0,521 | 0,4491 | 0,3515 | 0,1130 | 0,0633 | 0,008
0.5 171767 | 1.0423 | 0,8969 | 0,7403 | 0,6551 | 0,5112 | 0,3200 | 0,2605 | 0,2033 | 0,0393 | 0,0425 |} 6,009
1 05842 | 0,7882 | 0.6766 | 0,5548 | 0,4962 | 0,3772 | 0,2318 | 0,1874 | 0,1469 | 0,011 | 0,0224 | 0,0026
3] 04993 | 0.4433 | 0,3792 | 03079 | 0.2736 | 0,2045 | 0,1225 [ 0,0031 | 0,076l | 0,02)3 | 0,0110 | 0,0012
5 0'3615 | 0.3211 | 02743 | 0,2219 | 0,1957 | 0,1461 | 0,0855 | 0,0691 | 0,0334 | 0,0142 | 0,007 | 0,0008
10 | 09216 | 0,1970 | 0,1680 | 0,1353 | 01195 | 0,0832 | 0,0517 | 0,0811 | 0,0316 | 0,0033 § 0,004 | 0,0005
15 | 076241 01445 | 0,1232 | 0,089 | 0,0373 | 0,0642 | 0,0374 | 0,0207 [ 0,0223 } 0,0059 | 0,0032 | 0, 0003
20 | 01201 | 0.1147 | 0,0979 | 0,0785 | 0,06Y3 | 0,0598 | 0,0295 | 0,0234 | 0,017 | 0,005 | 0,0025 | 0,0004
M:=4
0,05 | 1,2430 | 1,1002 4 0,9528 | 0,7983 | 0,7244 | 0,5724 | 0,3778 | 0,3150 | 0,2557 | 0,0841 | 0,047 | 0,000
0,1 11518 | 10198 | 0,8819 | 0,7863 | 0,6666 | 0,5235 | 0,3414 | 0,2830 | 0,2283 | 0,072 | 0, 0414 | 0,000
05 | 0.8476 | 0,7511 | 0,6465 | 0,5330 | 0,4797 | 0,362 | 0,2321 | 0,1895 | 0,1501 | 0,0440 | 0,0214 40,0040
1 06844 | 0.6068 | 0,5212 | 0,4278 | 0,3820 1 0,2017 | 0,1802 | 0,1460 | 0,1148 | 0,0326 | O, 0178 | 1,002
3 | 04257 10,3779 | 03234 | 0,2630 | 0,2338 | 0,1753 | 0,1064 | 0,0845 | 0,0657 { 0,0179 1 0,000 0,0l
5 | 0.3207 | 0,289 | 0,2435 | 0,1972 | 0,1749 | 0,1302 | 0,0775 1 0,0618 | 0,0479 | 0,0123 | 0,006 10,0008
10 0,2054 ] 0,1826-] 0,1058 0,1255 1 0,1110 70,0820 { 0,012 § 0,0483 0,0205 10,0078 1 0,001 O,
15 1 001555 L 001365 | 0,1164 | 0,006 10,0826 | 0,0608 | 0,0355 | 0,0282 1 0,0216 | 0,000 1 0,004} 0, L0u
90 | 0 1233 001097 | 0,0035 | 0,0751 | 0,0662 | 0,0486 | 0,0283 | 0,0224 | 0,0172 [ 0,0015 | 00021 | 0,000
M=6
0,05 | 0,7786 | 0,6896 | 0,5968 | 0,4988 | 0,4519 | 0,3559 | 0,2343 | 0,1953 | 0,1536 0,0528 | 0,0308 | 0,0047
0,1 0.7378 | 0.6535 | 0,5649 | 0,4709 | 0,4259 | 0,3337 | 0,2175 | 0,1805 | 0,1458 0,0471 | 0,0271 { 0,0038
05 | 0.5913 ! 0.5241 | 0.4513 | 0,3728 | 0,3351 | 0,2583 | 0,1631 | 0,1334 | 0,106! 0,0316 | 0,0176 | 0,0022
1 0.5033 | 0.4463 | 03835 | 0.3152 | 0,2823 | 0,2156 | 0,1339 | 0,1088 | 0,0859 | 0,0247 0.,0136 | 0,0016
3 | 03447 | 0.3060 | 0,2620 | 0,2134 | 0,1899 | 0,1428 | 0,083 | 0,0694 | 0,0542 0,0149 | 0,0080 | 0,0009
5 02716 | 0.2412 | 0,2053 | 0,1673 | 0,1485 | 0,1109 | 0,0663 | 0,0530 | 0,0412 | 0,0111 0,0060 | 0,0007
10 | 01835 | 01631 | 0,1392 | 01124 | 0,0994 | 0,0735 | 0,0434 | 0,0345 | 0,0267 | 0,0071 0,0038 | 0,0004
15 | 0.1407 | 01252 | 0,1068 | 0,0859 | 0,0759 | 0,0559 | 0,0328 | 0,0260 0.0200 { 0,0053 | 0,0028 | 0,0003
20 | 01149 | 0'1022 | 0,0871 | 0,0700 | 0,0618 | 0,0454 | 0,0265 | 0,0210 | 0,0161 0.0042 | 0,0022 | 0,0002
M=38
0,05 | 0,5218 | 0,4623 | 0,3999 { 0,3337 | 0,3021 | 0,2374 | 0,1560 | 0,1303 | 0,1057 0,0355 | 0,0210 | 0,0033
0.1 05003 | 04434 | 0,3831 | 0,3190 | 0,2883 | 0,2256 | 0,1470 | 0,1220 | 0,0987 | 0,0323 0,0187 | 0,0028
0,5 04295 | 03746 | 0,3227 | 0,2666 | 0,2397 | 0,1850 | 0,1172 | 0,0962 | 0,0766 | 0,0232 0,0130 | 0,0017
] 0.3727 | 0.3305 | 0,2842 | 0,2338 | 0,2095 | 0,1603 | 0,1001 | 0,0815 | 0,0645 | 0 0189 0,0104¢ | 0,0013
3 | 02738 | 02440 | 0,2001 | 01705 | 0.1520 | 0,1146 | 0,0697 | 0,0562 | 0,0439 | 0,0122 0,0066 | 0,0008
5 0.2252 | 02000 | 0.1711 | 0.1390 | 0,1236 | 00925 | 0,0556 | 0,0446 | 0,0347 | 0,0095 } 0,0051 0, 0006
10 | 01603 | 01425 | 01217 | 0.0983 | 0.0871 | 0,0646 | 0,0382 | 0,0305 | 0,0236 | 0,0063 | 0,0034 0,0004
15 0.1264 | 0.1125 | 0,0960 | 0,0773 | 0,00684 | 0,0505 | 0,0297 | 0,0236 | 0,0182 0,0048 | 0,0026 | 0,0003
20 | 01050 | 0°0935 | 0.0797 | 0.0641 | 0,0566 | 0,0417 | 0,0244 | 0,0194 | 0,0149 | 0,0039 | 0,0021 0,0002
M=10
0,05 | 0.3711 | 0,3289 | 0,2844 | 0,2371 { 0,2145 | 0,168+ | 0,1105 | 0,0422 ] 0,0750 | 0,0255 0,0151 | 0,0025
0,1 0'3581 | 0.3174 | 0,2742 | 0.2282 | 0.2061 | 0,1612 | 0,1050 | 0,0872 | 0,0706 | 0,0233 | 0,013t 0,0021
0.5 0.3125 | 0,2772 | 0.2388 | 0,1974 | 0,1775 | 0,1371 | 0,0872 | 0,0716 | 0,0572 { 0,0176 0,009 | 0,0013
1 0.2824 | 0,2505 | 0,2151 | 0,1774 | 0,1591 | 0,1220 | 0,0765 | 0,0624 | 0,049% 0,0147 | 0,0082 | 0,0010
3 | 0'2198 | 0,1952 | 0,1674 | 0,1367 | 0,1219 | 0,0922 | 0,0564 | 0,0455 | 0,0357 0,0101 | 0,0055 | 0,0006
5 0.1859 | 0,1651 | 0,1414 | 0,1150 { 0,1023 | 0,0768 | 0,0464 | 0,0373 | 0,0291 0,0080 | 0,0043 | 0,0005
10 | 0.1385 | 01231 | 0,1052 | 0,0852 | 0,0755 | 0,0661 | 0,0334 | 0,0267 | 0,0207 0,0055 { 0,0030 | 0,0003
15 0°1122 | 0.0997 | 0,0852 | 0,0687 | 0,0608 | 0,0450 | 0,0265 | 0,0212 | 0,0164 | 0,0043 0,0023 | 0,0003
20 0.0949 | 0.0844 | 0,0720 | 0,0580 | 0,0812 | 0,0378 | 0,0222 | 0,0176 | 0,0136 | 0,0036 0,001y | 0,0002
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(cont'd)

b
’ o | oa | 0s | or | 2 | s 1 | w0 © 0 | 100
M=12
0,05 | 0,2766 | 0,2452 ) 0,2120] 0,1767 | 0,1598 | 0,1253 | 0,0823 | 0,0687 | 0,0559 | 0,0192 | 0,01!5 0,0020
0.1 | 0.2678 | 0.2374 | 0.2051 | 01706 | 0,1540 | 0.1204 | 0,0784 | 0.0652 | 0,0528 | 0,017G | 0.0104 | 0.00i6
0,5 0,2388 { 0,2118 | 0,1826 | 0,1509 | 0,4358 { 0,1049 | 0,0669 | 0,0550 | 0,0440 | 0,0137 | 0,0077 | 0,0010
| 0,2196 | 0,1948 | 0,1676 | 0,1381 | 0,1239 | 0,0951 [ 0,0598 | 0,0489 | 0,0389 { 0,0117 | 0,0065 | 0,0008
3 0,1778 1 0,1579 ] 0,1355 | 0,0108 | 0,0989 | 0,0749 | 0,0460 | 0,0373 | 0,0293 | 0,0084 | 0,0046 | 0,0005
S 0,1540 { 0,1368 { 0,1172 | 0,055 | 0,0851 | 0,0640 | 0,0389 | 0,0313 | 0,0245 | 0,0068 | 0,0037 | 0,000+
10 | 01193 | 0,1060 | 0,0907 | 00735 | 0,0652 | 0.0486 | 0,0290 | 0,0233 | 0.0181 | 0,0049 | 0,0026 | 0.0003
15. | 0,0989 | 00879 | 0,0751 | 0,0607 | 00537 | 0,0399 | 0,0236,| 0.0189 | 0.0146 | 0,0039 | 0.0021 | 0.0002
20 0,0850 | 0,0756 | 0,0646 | 0,0521 | 0,0461 | 0,0341 | 0,0200 § 0,0159 | 0,0123 | 0,0033 | 0,0017 | 0,002
Hydrogen-air
M=0 .
0,05 | 2,6608 | 2,5482 | 2,37i7 | 2,1057 | 1,9524 | 1,5965 | 1,0845 | 0,9095 | 0,7409 | 0,2409 | 0,1376 | 0.0185
0,1 2,2087 | 2,1977 | 2,0386 | 1,7998 | 1,6628 | 1,3471 | 0,8995 | 0,7487 | 0,6049 | 0,1894¢ | 0,1066 | 0,0138
0,5 1,3648 | 1,2980 | 1,1923 | 1,0355 | 0,9471 | 0,7478 | 0,4778 | 0,3906 ! 0,3095 | 0,0895 | 0,0490 | 0,u0039
| 0,9933 | 0,9424 | 0,8615 | 0,7425 | 0,6760 | 0,5278 { 0,3310 | 0,2887 | 0,2114 | 0,0595 | 0,0323 | 0,0033
3 0,5310 } 0,5018 | 0,4555 | 0,3880 | 0,3509 | 0,295 | 0,1648 | 0,1326 | 0,1033 | 0,0281 | 0,015! 0,0017
5 0,3778 | 0,3565 | 0,3229 | 0,2735 | 0,2467 | 0,1882 [ 0,1141 | 0.0914 | 0,0710 [ 0,0191 | 0,0102 | 0,001}
10 0,2277 | 0,2144 | 0,1933 | 0,1630 |{-0,1465 | 0,1110 | 0,0665 | 0,0531 | 0,0411 | 0,0109 | 0,0058 } 0,0007
15 | 0,1657 | 0,1550 | 0,1403 | 0.1180 | 0,1059 | 0.0799 | 0,0477 | 0.0380 | 0,0293 | 0.0077 | 00041 | 0,0005
20 -] 0,1312 { 0,1233 | 0.1108 | 0,093 | 0,0834 | 0,0628 | 0,0374 | 0,0297 | 0,0229 | 0,0060 | 0,0032 | 0,0004
M=i
0.C5 | 2,4670 | 2,3619 | 2,1973 | 1,9495 | 1,8069 | 1,4764 | 1,0023 | 0,8405 | 0,6848 | 0,2233 | 0,1277 | 0,0173
0.1 | 2,1524 | 2,0574 | 1,9079 | 16836 | 1.5551 | 1,2593 | 0.8408 | 0,7000 | 0.5657 | 0,1776 | 0,1001 | 0,0129
0.5 | 1,3115 | 1,2473 | 1.1457 | 0,9951 | 0,9101 | 09,7187 | 0,4595 | 0,3758 | 0.2979 | 0,0863 | 0,0473 | 0,0057
I | 0,947 | 0,9152 | 0,8367 | 0.7212 | 06566 | 0.5127 | 0.3218 | 0.2613 | 0,2058 | 0.0579 | 0.0315 | 0,0037
3 | 0.5227 | 0.4940 | 0.4483 | 0.3820 | 0.3455 | 0.2654 | 0.1624 | 0.1306 | 0.1018 | 0,0277 | 0,0149 | 0,0017
5 | 0,3736 | 0,352 | 0.3190 | 0.2706 | 0,2440 | 0,1862 | 0,1129 | 0,0905 | 0,0703 | 0,0190 | 0,0101 | 0,0012
10 | 0,2261 | 0,2229 | 0.1920 | 0,1619 | 0,1456 | 0,1102 | 00661 | 0,0528 | 0,0409 | 070108 | 0,0058 | 0,0006
15 | 0.1649 | 0.1551 | 0,1396 | 0.1174 | 0.1054 | 0,0796 | 0,0475 | 0,0378 | 0.0292 | 0.0077 | 0.0041 | 00005
20 | 0,1306 | 01228 | 0,1104 | 0,0927 | 0,0831 | 0,0626 | 0,0372 | 0,0296 | 0,0229 | 0,0060 | 0.0032 | 0,0003
M=2
0,05 | .2,0381 | 1,9500 | 1,8i20 | 1,6048 | 1,48G1 11,2120 | 0,8215 | 0,6889 | 0,5614 | 0,1842 | 0,1058 | 0,0146
0.1 | 1.8168 | 1.7357 | 1.6083 | 1.4176 | 1,3087 | 1,0587 | 0.7067 | 0,5886.| 0.476i | 0.1505 | 0.0852 | 0.0112
0.5 | 1.1767 | 1,1190 { 1.0277 | 0.8926 | 0.8164 | 0.6450 | 0,4030 | 0.3381 | 0,2683 | 0,0782 | 0,0429 | 0,0052
I | 0,8892 | 0.8436 | 0.7712 | 0.6650 | 06055 | 0,4731 | 0,2975 | 0,2418 | 0.1904 | 00640 | 0,0293 | 0,0035
3 | 0,4994 [ 0,4720 | 0,4285 | 0.3652 | 0,3303 | 0.2539 | 0,1556 | 0,1253 | 0,0977 | 0.0266 | 0.014% | 0,0016
5 | 0.3615 | 0,3411 | 0,3087 | 0,2619 | 0,2362 | 0.1804 | 0,1095 | 00878 | 0,0682 | 0,0184 | 0,0098 | 0,0011
10 | 0.2216 | 0,2087 | 01882 | 0,1587 | 0.1427 | 0.1082 | 0,0649 | 0.0518 | 0.0401 | 0,0107 | 0,0057 | 0.0006
15 | 0.1625 | 0,1528 | 01376 | 0,1157 | 0,1039 | 0,0784 | 0,0468 1 0,0373 | 0,0288 | 0,007 | 0,0041 | 0,0005
20 0,1291 | 0,1214 | 0,109 | 0,0916 | 0,0822 | 0,0619 | 0,0368 | 0,0293 | 0,0226 | 0,0059 | 0,0032 0,0003
Mmid ‘
0,05.| 1,2430 | 1,1875 | 1,1004 | 0,9008 | 0,8971 | 0,7286 | 0,4921 | 0,4126 | 0,3365 | 0,1121 | 0,0651 | 0,0095
0.1 | 1.1586 | 1,0992 | 1.0165 | 0,8935 | 0,8237 | 0.6648 | 04436 | 0,36Y9 | 0,2997 | 0,0065 | 0,0552 | 0,0076
0.5 | 0/8476 | 0.8058 | 0,739 | 0,6426 | 0,5879 | 0,465 | 0,2992 | 0,2456 | 0,1955 | 0,0580 | 0,032 | 0,0040
1 | 0.6844 | 0°6494 | 0.5938 | 0.5123 | 0.4668 | 03655 | 0.2310 | 0.1883 | 0,1488 | 0,0427 | 0,0234 | 0,0028
3 | 0,4257 | 0.4024 | 03655 | 03119 | 0,2823 | 0,2175 | 0,1339 | 0,1079 | 0,0844 | 00232 | 0,0126 | 0,0015
5 | 0,3207 | 03027 | 0.2742 | 0/2328 | 02101 | 01608 | 0,0979 | 0,0786 | 0,0612 | 0,0166 | 0,008 | ©,0010
10 | 0.2054 | 01934 | 01746 | 0,1473 | 0,1325 | 0,1006 | 0,0605 | 0,0484 | 0,0375 | 0,0100 | 0,0053 | 0,0006
15 | 0.1535 | 01444 | 01301 | 0, 1095 | 0,083 | 0,0743 | 0,0444 | 0,0355 | 0,0274 | 0,073 | 0,0039 | 0,C004
20 | 0.1233 | 0.1160 | 0.1043 | 00677 | 0,0786 | 0,0593 | 0,0353 | 0,0282 | 0,0217 | 0,0057 | 0,0031 | 0,0003

267




(cont'd)

o1 | os 0 | 2 | s | 7 ] w | o | w | 1w

2650 ) 0,2081 | 0,0702 | 0,0412 0,063
352 | 0,1909 | 0,0625 | 0,0361 0,0052
728 | 0,1380 | 0,0417 | 0,0233 0,t6238
402 10,1112 | 0,0425 | 0,017Y 0,0022

0,05 | 0,7787 ) 0,7430 | 0,6872 | 0,6044 [ 0,5776 | 0,4514 | 0,3041 | O
0,1 0,7378 | 0,7035 | 0,6995 { 0,5696 | 0,5245 | 0,4225 [ 0,2818 | O
0,5 0,593 10,5621 10,5159 | 0,4480 | 0,4099 | 0,3248 | 0,2049 | 0,
1 0,5033 | 0,4775 | 0,4368 | 0,3772 10,3439 | 0,2699 | 0,1716 | O -
3 0,3446 | 0,3260 | 0,2963 | 0,2532 | 0,2294 [ 0,1773 | 0,1097 | 0,08547 | 0,06¢5 | 0,0194 | 0,0105 | 0, 1012

o 0,2716 ] 0,2564 | 0,2324 | 0,1977 [ 0,1786 | 0,1370 [ 0,0838 | 0,0675 | 0,0526 | 0,0144 | 0,0078 0,00
10 0,1835 [ 0,1729 1 0,1561 | 0,1320 | 0,1188 1 0,0903 | 0,0545 | 0,0437 | 0,0338 | 0,C09] | O,CU4Y 0,000
15 0,1408 | 0,1325 | 0,1194 [ 0,1006 | 0,004 | 0,0684 | 0,0410 | 0,0328 | 0,0254 | 0,C067 | 0,0036 0,004
20 0,1149 1 0,1081 | 0,0973 | 0,0818 | 0,0734 | 0,0554 | 0,0331 | 0,0204 | 0,0204 | 0,0054 | 0,024 0,000y

M. 3

,05 | 0,5218 1 0,4975 1 0,4594 | 0,4033 | 0,3716 | 0,3003 | 0,2021 | 0,1694 | 0, 1384 | 0,0472 1 0,0280 0,001H
1 0,5003 | 0,4767 | 0,4396 | 0,3850 | 0,3542 | 0,2%50 | 0,1900 | 0, 1587 [ 0,1291 | 0,0428 [ 0,0249 0,c037
5 0,4225 | 0,4015 1 0,3685 | 0,3200 1 0,2929 | 02324 ] 0,1507 1 0,1244 | 0,009 | 0,0806 { 0,0172 [UN AR
| 0,3727 | 0,3536 | 0,3236 | 0,2796 | 0,2551 | 0,2006 | 0,1282 ] 0,1051 | 0,0836 | 0,0248 [ 0,00138 O, 0017
3 0,2748 | 0,2599 | 0,2365 | 0,2024 | 0,1836 | 0,1422 | 0,0885 | 0,0718 | 0,0564 | 0,0159 | 0,0087 | 0,0010
5 0,2252 | 0,2127 | 0,1930 | 0,1644 | 0,1486 | 0,1143 | 0,0703 | 0,0567 | 0,0444 | 0,0123 | 0,0u66 | 0,0007
10 0,1603 | 0,1511 | 0,1366 | 0,1156 | 0,1042 | 0,0794 | 0,0481 | 0,0386 { 0,0300 | 0,0081 { 0,0043 | 0,0005 .
15 0,1265] 0,119t | 0,1074 | 0,0906 | 0,0815 { 0,0618 | 0,0372 | 0,0298 | 0,0231 | 0,0062 | 0,0033 | 0,000+
20 0,1051 | 0,0989 | 0,0890 | 0,0750 | 0,0673 | 0,0509 | 0,0305 | 0,0244 | 0,01838 | 0,0050 | 0,0027 | 0,0003

M=10

05 | 0,371t} 0,3536 | 0,3263 | 0,2860 | ©,2634 | 0,2125 | §,1429 | 0,1199 | 0,0980 { 0,0338 | 0,0202 | 0,0034
1 0,3581 | 0,3410 | 0,3142 | 0,2748 | 0,2527 [ 0,2032 | 0,1355 | 0,1133 | 0,0922 | 0,0309 | 0,0181 | 0,0023
5 0,3125 | 0,2970 | 0,2725 | 0,2366 | 0,2166 | 0,1720 | 0,1120 | 0,0925 | 0,0743 | 0,0232 | 0,0131 | 0,017
1
3
5

0,2824 | 0,2680 | 0,2453 | 0,212! | 0,1936 | 0,1525 | 0,0979 | 0,0804 | 0,0642 | 0,0193 | 0,0108 [ 0,0014
0,219% | 0,2080 | 0,1894 | 0,1623 | 0,1473 [ 0,1145 | 0,0717 | 0,0582 | 0,0459 | 0,0131 [ 0,0072 | 0,0004
0,1859 10,1756 | 0,1595 | 0,1360 | 0,1232 | 0,0950 | 0,0587 | 0,0475 | 0,0373°| 0,0104 | 0,0057 | 0,0007
10 0,1385 10,1306 | 0,1181 10,1002 { 0,093 | 0,0690 | 0,0420 | 0,0338 | 0,0263 | 0,0072 | 0,0039 [ 0,0604
15 0,1122 10,1057 | 0,0054 | 0,0856 | 0,0725 ' 0,0551 | 0,0333 | 0,0267 | 0,0207 | 0,0056 | 0,0040 | 0,0003
20 0,0949 | 0,083 | 0,0805 | 0,0078 | 0,06009 | 0,0462 | 0,0278 | 0,0222 | 0,0172 | 0,0046 | 0,0025 | 0,0k)3

Me=12

0,05 0,2766 | 0,2635 | 0,2430 | 0,21258 1 0,1959 | 0,1580 ) 0,1062 | 0,0892 | 0,0730 | 0,0255 | 0,0153 | 0,0027
0.1 0,2678 | 0,2549 | 0,2347 | 0,2052 | 0,1886 | 0,1515 | 0,1011 | 0,0846 | 0,0084 { 0,0233 | 0,0137 0,0022
0,5 0,2388 10,2269 | 0,2882 [ 0,1808 | 0,1656 | 0,1315 | 0,0859 | 0,0711 | 0,0572 | 0,0181 | 0,0103 | 0,0014

! 0,2195 | 0,208¢ | 0,1907 | 0,1650 | 0,1507 | 0,1189 | 0,076 | 0,0630 | 0,0004 | 0,0154 | 0,008 | 0,001]
3 | 0,1778 { 0,1683 | 0,1533 | 0,1315 | 0,1195 | 0,0931 | 0,0585 | 0,0477 | 0,0377 | 0,0109 | 0,0060 0,0007
5 0,1541 10,1456 [ 0,1323 10,1130 1 0,1024 | 0,0792 1 0,0492 | 0,0399 | 0,0313 | 0,0084 | 0,004~ 0, 0006
0 0,1193 [ 0,1125 | 0,1018 | 0,0865 | 0,078]1 | 0,0598 [ 0,0366 { 0,0295 | 0,0230 | 0,0063 | 0,004 0, 0004
15 0,0989 10,0932 | 0,0842 | 0,0712 | 0,0642 |.0,0489 | 0,0297 | 0,0238 | 0,0185 | 0,0050 | 0,0027 0, 0003
20 0,0850 | 0,0801 | 0,0722 | 0,0609 | 0,054% | 0,0416 | 0,025] | 0,0201 | 0,0156 | 0,0042 | 0,0022 0,0003
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